首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82588篇
  免费   15418篇
  国内免费   17876篇
测绘学   6950篇
大气科学   11704篇
地球物理   15238篇
地质学   45411篇
海洋学   9589篇
天文学   9499篇
综合类   5409篇
自然地理   12082篇
  2024年   192篇
  2023年   873篇
  2022年   2364篇
  2021年   2732篇
  2020年   2781篇
  2019年   3141篇
  2018年   2636篇
  2017年   3017篇
  2016年   3142篇
  2015年   3533篇
  2014年   4548篇
  2013年   4636篇
  2012年   4967篇
  2011年   5435篇
  2010年   4822篇
  2009年   5934篇
  2008年   5808篇
  2007年   6193篇
  2006年   5924篇
  2005年   5377篇
  2004年   4819篇
  2003年   4544篇
  2002年   3892篇
  2001年   3505篇
  2000年   3244篇
  1999年   2955篇
  1998年   2558篇
  1997年   2059篇
  1996年   1813篇
  1995年   1532篇
  1994年   1533篇
  1993年   1318篇
  1992年   960篇
  1991年   735篇
  1990年   587篇
  1989年   477篇
  1988年   370篇
  1987年   224篇
  1986年   163篇
  1985年   126篇
  1984年   62篇
  1983年   51篇
  1982年   50篇
  1981年   36篇
  1980年   38篇
  1979年   31篇
  1978年   48篇
  1977年   33篇
  1975年   6篇
  1954年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
区域中长期地震危险性数值分析研究,需要对其初始构造应力场有所了解,但目前以及未来一段时期内仍无法直接观测到深部孕震层区域的应力场状况.本文首先基于岩石库仑-摩尔破裂准则,利用青藏高原及邻区百年历史范围内的强震信息,来反演估算该区域的初始应力场.然后,考虑区域构造应力加载及强震造成的应力扰动共同作用,重现了历史强震的发展过程.然而对于初始应力场的反演估算,本文仅能给出区域其上下限的极限值,并不能唯一确定.因此,采用Monte Carlo随机法,进行大量独立的随机试验计算,生成数千种有差异的区域初始应力场模型,且保证每种模型都能令历史强震有序发生,但未来应力场演化过程不尽相同.最后,将数千种模型在未来时间段内的危险性预测结果集成为数理统计结果,据此给出了区域未来的地震危险性概率分布图.初步结果显示未来强震危险性概率较高地区集中在巴颜喀拉块体边界及鲜水河断裂带地区.  相似文献   
2.
波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.  相似文献   
3.
Amik Lake or, historically, Lake of Antioch, was a large freshwater body in the lower Orontes River basin (Hatay Province, Turkey) that was drained in the 1940s–1970s. Several endemic animal species were described from this lake, including the freshwater mussel Anodonta pseudodopsis Locard, 1883 (Bivalvia: Unionidae) characterized by a large rounded shell covered by a peculiar yellow or yellowish-brown periostracum. Molecular analyses of topotypes of this nominal taxon collected from the former lake’s tributaries in the Amik Plain indicate that it is an intra-specific lineage of the widespread Anodonta anatina (Linnaeus, 1758) based on the mitochondrial COI and 16S rRNA, and the nuclear 28S rRNA gene fragments. Geometric morphometric analyses using the lectotype and topotypes of Anodonta pseudodopsis support our DNA-based hypothesis on the status of this nominal taxon. A new synonymy is provided as follows: Anodonta anatina = Anodonta pseudodopsis syn. nov. The syntype of Anodonta pseudodopsis SMF 5129 “See von Antiochia” (Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany) is designated here to be the lectotype of this nominal taxon. Finally, we conclude that Anodonta anatina range covers the Orontes River basin in Turkey and Syria and the Nahr al-Kabir al-Shamali River in the Latakia Governorate of Syria. This intraspecific lineage of Anodonta anatina and other freshwater mussels of the Middle East are highly threatened due to multiple anthropogenic impacts and must be a focus of international conservation efforts. The Karasu River in eastern Turkey hosts viable populations of all freshwater mussel species of the Orontes’s fauna and can be considered one of the most important water bodies for the conservation of these imperiled animals in the region.  相似文献   
4.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
5.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   
6.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
7.
8.
Subsurface dams are rather effective and used for the prevention of saltwater intrusion in coastal regions around the world. We carried out the laboratory experiments to investigate the elevation of saltwater wedge after the construction of subsurface dams. The elevation of saltwater wedge refers to the upward movement of the downstream saltwater wedge because the subsurface dams obstruct the regional groundwater flow and reduce the freshwater discharge. Consequently, the saltwater wedge cannot further extend in the longitudinal direction but rises in the vertical profile resulting in significant downstream aquifer salinization. In order to quantitatively address this issue, field-scale numerical simulations were conducted to explore the influence of various dam heights, distances, and hydraulic gradients on the elevation of saltwater wedge. Our investigation shows that the upward movement of the saltwater wedge and its areal extension in the vertical domain of the downstream aquifer become more severe with a higher dam and performed a great dependence on the freshwater discharge. Furthermore, the increase of the hydraulic gradient and the dam distance from the sea boundary leads to a more pronounced wedge elevation. This phenomenon comes from the variation of the freshwater discharge due to the modification of dam height, location, and hydraulic gradient. Large freshwater discharge can generate greater repulsive force to restrain the elevation of saltwater wedge. These conclusions provide theoretical references for the behaviour of the freshwater–seawater interface after the construction of subsurface dams and help optimize the design strategy to better utilize the coastal groundwater resources.  相似文献   
9.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
10.
提出了一种基于三维块匹配(BM3D)和多级非线性加权平均中值滤波的遥感影像混合噪声去噪方法,使用coief3小波和sym2小波替换传统三维块匹配算法中的bior1.5和hear参数,将三维块匹配算法和多级非线性加权平均中值滤波相结合以提高算法对混合噪声的去噪能力。进行一个仿真对比试验和一个真实遥感影像去噪试验,试验表明,本文提出的方法在遥感影像混合噪声去噪方面效果要优于传统混合噪声去噪方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号