首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  国内免费   1篇
  完全免费   33篇
  地球物理   40篇
  2021年   1篇
  2020年   6篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有40条查询结果,搜索用时 46 毫秒
1.
太湖入湖河口和开敞区CDOM吸收和三维荧光特征   总被引:15,自引:3,他引:12       下载免费PDF全文
应用吸收和三维荧光光谱对2007年夏季太湖入湖河口和大太湖开敞区有色可溶性有机物(CDOM)浓度及来源进行研究.结果表明,河口区和开敞区CDOM吸收系数a(355)存在显著空间差异,河口区明显大于开敞(ANOVA,P<0.001),a(355)最大值出现在大浦河口和竺山湾漕桥河几附近,最小值出现在东太湖和胥口湾.a(355)与溶解性有机碳、化学耗氧量浓度存在显著正相关.所有样品一般都含有4个明显的荧光峰,包括1个可见光区的类腐殖质荧光C峰,1个紫外光区的类腐殖酸荧光A峰,2个类蛋白荧光B峰和D峰.河口区外源输入的类腐殖质荧光非常强,最著大于开敞区(ANOVA,P<0.05).而河口区和开敞区类蛋白荧光没有显著性差异,反映开敞区除外源河流输入外,内源生物降解等对类蛋白荧光贡献增加.在河口区B、C峰的比值r(B/C)/b于1,均值为0.62±0.14、在开敞区r(B/C)除12#是0.92,其他值均大于1,均值为1.12±0.13,初步判断r(B/C)可以作为区分CDOM来源的重要参数.CDOM吸收a(355)与类腐殖质荧光C峰、A峰均存在极显著的正相关,而与类蛋白荧光相关性则明显下降,与D峰存在显著正相关,与B峰没有显著相关.  相似文献
2.
太湖典型湖区真光层深度的时空变化及其生态意义   总被引:13,自引:0,他引:13       下载免费PDF全文
利用1998~2004年在太湖不同湖区进行的多次水下辐照度观测资料及全湖典型湖区13个站点1993~2003年的悬浮物和风速资料, 分析了PAR真光层深度的影响因素, 并获得太湖典型湖区真光层深度的时空变化以及2号点真光层深度的光谱分布. 结果表明, PAR真光层深度主要受悬浮物浓度影响, 其次则是叶绿素a浓度, 溶解性物质对其影响甚微. 1993~2003年典型湖区PAR真光层深度年均值在1.04~1.95 m之间变化(均值为1.35±0.23 m), 空间上大致可以分为3类区, 其中湖心区、河口区最小, 为Ⅰ类区; 梅梁湾、五里湖、贡湖湾其次, 为Ⅱ类区; 东太湖最大, 为Ⅲ类区, 对应的均值分别为1.1, 1.4, 2.0 m左右. 不同湖区真光层深度季节变化存在一定差异, 其中湖心区真光层深度夏、秋2季大于冬、春2季, 梅梁湾是冬季要大于其他3季, 而东太湖则是冬季均要小于其他3季, 五里湖、贡湖湾和河口区4季变化则不是很明显. 真光层深度的光谱分布最小值出现在400 nm的蓝光波段, 最高值出现在580 nm附近的绿光波段. 1998~1999年在2号点每季多日连续观测得到PAR真光层深度春、夏、秋、冬4季的均值分别为2.00±0.21, 2.52±0.45, 1.58±0.24, 2.00±0.15 m, 而浮游植物吸收的440 nm峰值对应的真光层深度则只有0.81~1.47 m(均值为1.07±0.29 m), 明显低于1.98±0.41 m的平均PAR真光层深度.  相似文献
3.
东太湖CDOM吸收光谱的影响因素与参数确定   总被引:7,自引:7,他引:11  
CDOM吸收特性是湖泊水色遥感的重要研究内容之一,影响着水体的遥感反射率;吸收光谱的形状一般符合波长的负指数关系,但不同水体的形态因子即S值是不同的.实地采集东太湖水样,实验室测量叶绿素、悬浮物质以及黄色物质的组份含量,室内测试计算水样的CDOM吸收光谱,根据光谱曲线形状,把样点分为三组,分别进行考察,结果发现对东太湖春季水体而言,浮游植物的降解对CDOM吸收具有重要甚至主导作用;水体中有机悬浮颗粒占有一定的比例,在测试或计算东太湖总的吸收或散射系数时,必须充分考虑有机悬浮颗粒的吸收与散射特性,否则会带来较大的误差;以500nm为分界点,把300—700nm的波段范围分为两个部分即300—500nm和500—700nm,分别定义CDOM吸收光谱的曲线斜率即S值,可以提高CDOM吸收光谱的估测精度,把S值定义为随波长线性变化的函数,可以进一步提高CDOM吸收光谱的估测精度,对东太湖春季水体而言,当:300≤λ<500nm时,S(μm-1)=-0.0193×λ 20.821,当500≤λ≤700nm时,S(μm-1)=-0.0121×λ 16.003.  相似文献
4.
湖泊光学研究进展及其展望   总被引:7,自引:4,他引:3       下载免费PDF全文
张运林 《湖泊科学》2011,23(4):483-497
从湖泊光学研究理论框架、研究方法、水体生物光学特性、有色可溶性有机物(CDOM)生物地球化学循环、光与浮游植物相互关系、沉积物再悬浮光学效应、湖泊水色遥感等几个方面全面回顾了湖泊光学研究进展.湖泊光学研究理论框架主要包括各光学组份吸收、散射、漫射衰减及辐射传输方程;近年来,逐步发展了野外时空格局调查、水动力水华过程连续观测、生物光学参数高频自动监测、室内模拟控制实验等相结合的一系列研究方法;水体生物光学特性方面,开展了大量不同类型湖泊水体颗粒物吸收、散射、后向散射、漫射衰减、真光层深度的野外测定,获得了固有、表观光学特性之间相互关系以及与光学组份浓度之间定量关系;CDOM生物地球化学循环方面,利用CDOM光谱吸收、三维荧光技术定量表征了CDOM空间分布、来源、组成差异、消除途径及对紫外辐射衰减影响程度;光与浮游植物相互关系方面,获得UV-B辐射对浮游植物生长影响,发展了浮游植物初级生产力计算的垂向归纳模型;沉积物再悬浮光学效应方面,发现沉积物再悬浮显著影响光场结构,降低透明度和真光层深度进而降低湖泊初级生产力;湖泊水色遥感方面,建立了湖泊水质参数悬浮物、叶绿素a浓度及浮游植物、CDOM吸收系数等遥感反演算法,并应用到卫星影像对富营养化湖泊蓝藻水华开展遥感监测.最后,基于以上几个方面湖泊光学的研究现状,从微观和宏观不同层面就湖泊光学研究进一步发展做出了展望.  相似文献
5.
云南高原湖泊是我国湖泊分布最密集的五大湖群之一,不但湖泊数量众多而且类型多样.由于湖泊所处位置海拔较高,容易受只益增强UV-B辐射影响.通过对云南高原34个湖泊有色可溶性有机物和颗粒物吸收测定,分析其光谱吸收特性及对总吸收的贡献,有利于深刻理解紫外辐射在高原湖泊内衰减.不同湖泊间CDOM吸收差异明显,其大小与水体营养盐状况相关,CDOM吸收系数与水体总氮存在显著正相关.增加背景项的指数函数模型能最好模拟CDOM光谱吸收.除在浮游植物浓度非常高的杞麓湖、听湖、星云湖,颗粒物吸收系数在675nm附近存在一个吸收蜂外,其它湖泊总颗粒物光谱吸收大致随波长的增加吸收系数逐渐降低,呈现非色素颗粒物光谱吸收特征,整体上颗粒物吸收以非色素颗粒物为主.CDOM对总吸收的贡献主要集中在600nm以下波长,尤其是400nm以下的紫外波段,其在紫外波段(350-400nm)的贡献明显要大于光合有效辐射波段(400-700nm)(ANOVA,P<0.001).特别对于透明度SD≥1.0的清澈型湖泊,CDOM吸收对紫外辐射衰减的贡献更大,其吸收很大程度上决定了紫外辐射的影响深度.  相似文献
6.
基于2004年10月对全湖67个采样点水下光合有效辐射(photosynthetically active radiation:PAR)和各光学活性物质浓度的测定,分析了真光层深度的空间分布及其影响因素.利用实测的叶绿素a浓度,真光层深度,PAR强度,由水温计算得到的最佳固碳速率以及由经纬度计算的日照周期等,在垂向归纳模型(vertically generalized production model:VGPM)的支持下估算了全湖秋季浮游植物初级生产力.真光层深度的变化范围为0.37-5.27m(均值为1.52±1.06m),高值出现在东太湖、胥口湾、东西山之间等水生植物分布茂盛的草型湖区,而在梅梁湾、湖心区以及西南面的开阔湖区真光层深度均较小.回归分析显示,真光层深度主要受制于非色素颗粒物浓度,浮游植物和溶解性有机物的贡献相对要小得多.叶绿素a浓度和VGPM模型估算的浮游植物初级生产力变化范围分别1.21-53.59μg/L、77.4-2484.9mg/(m2·d),其时空分布基本一致,高值出现在富营养化的藻型湖区梅梁湾,低值出现在胥口湾和西南开阔湖区.VGPM模型和经验模式对比结果显示两者值比较接近并存在显著相关(r2=0.79.P<0.0001).两类模型全湖的均值分别为694.5±492.0、719±84±315.4mg/(m2·d),但由于VGPM模型考虑到真光层深度、温度、PAR强度以及日照周期对初级生产力的影响,其变化范围明显大于经验模型,也更能反映初级生产力的空间变化.  相似文献
7.
2004年3月对太湖梅梁湾有色可溶性有机物(CDOM)的吸收和荧光等光学行为进行研究,并由此探讨了CDOM的空间分布.结果表明,溶解性有机碳(DOC)的浓度在10.48-19.72 mg/L间变化,其均值为13.20±2.79 mg/L;CDOM在280 nm,355 nm和440 nm的吸收系数分别为18.73-31.91 m-1(平均值23.19±4.36 m-1)、4.63-7.14 m-1(平均值5.76±0.91 m-1)、1.45-2.99 m-1(平均值1.92±0.40 m-1);355 nm波长处CDOM的比吸收系数为0.34-0.57 L/(mg·m),平均值0.44±0.06 L/(mg·m);表征CDOM分子大小的比值a(250)/a(365)变化范围为5.05-7.55;355 nm的激发波长、450 nm的发射波长处的荧光值的变化范围0.79-3 04 nm-1(平均值1.69±0.77 nm-1).CDOM吸收系数、DOC浓度、荧光强度的分析显示CDOM浓度呈现从河口往湾内、湾口递减的趋势.CDOM吸收与DOC浓度的相关性随波长的降低而增加,在短波部分存在明显的正相关.355 nm处的荧光值、DOC浓度与CDOM吸收系分别存在如下显著性正相关关系:Fn(355)=0.692(±0.135)a(355)-2.297(±0.786),a(355)=0.233(±0.061)DOC 2.690(±0.816).280 -500 nm、280-360 nm、360-440 nm指数函数斜率S值分别为13.86±0.91、18.54±1.11、12.93±0.92μm-1,S值与比吸收系数之间存在显著的负线性相关关系,而与a(25)/a(365)值则存在显著的正线性关系.比吸收系数越大,a(250)/a(365)值和S值就越小,对应的CDOM分子量就越大,腐质酸的比例就越高.  相似文献
8.
太湖梅梁湾水体悬浮颗粒物吸收系数的分离   总被引:4,自引:3,他引:1       下载免费PDF全文
针对2004年7月17日梅梁湾16个采样点悬浮颗粒物的吸收系数,利用基于光谱标准的方法,将悬浮颗粒物的吸收系数分离成藻类和非藻类颗粒物两种,并将其中藻类颗粒物的吸收系数与通过甲醇浸泡法所得的结果进行分析对比.结果表明:利用甲醇浸泡提取法对藻类、非藻类吸收系数的分离,当非藻类颗粒物浓度较高时,所得的藻类吸收系数呈现出较明显的非藻类颗粒物的特征,造成藻类颗粒物吸收系数有所放大,且在短波段处体现的尤为明显;而基于光谱标准的模拟法能较好地将藻类颗粒物的吸收系数从总悬浮颗粒物吸收系数中分离出来,与甲醇浸泡法相比,藻类颗粒物在440、675 nm吸收峰处的吸收系数与叶绿素a的浓度相关性(R3)得到了较为明显的提高,分别由原来的0.66、0.75提高到了0.8964和0.8401;就甲醇浸泡法而言,总悬浮物吸收系数的谱形状对藻类吸收系数的放大程度有较大的影响,当其越接近藻类颗粒物的吸收特征时,则色素提取法造成的误差越小,相反,当其越接近非藻类颗粒物的吸收特征时,则甲醇浸泡法造成的误差越大.  相似文献
9.
为揭示大型浅水湖泊水体磷浓度对湖泊外源负荷削减和生态系统变化的响应规律,指导富营养化湖泊水生态修复和管理实践,利用太湖湖泊生态系统研究站2005-2018年连续14年的太湖水体各形态磷浓度的月、季度调查数据,估算了太湖湖体各形态磷赋存量的季度变化,分析了太湖水体磷浓度受湖泊水位、水量、蓝藻水华态势(蓝藻总生物量及水华出现面积)等环境条件变化的影响特征.结果表明,在连续10年的全流域高投入污染治理背景下,太湖水体总磷浓度仍未发生显著下降,水体各形态磷浓度在年际、月际及空间上的变幅大,不同季节和不同湖区总磷浓度的时空差异性大于14年来总磷浓度年均值的差异性;全湖32个监测点上、中、下3层混合样水体总磷平均值为0.113 mg/L(n=1788),其中颗粒态磷浓度平均值为0.077 mg/L,是水体总磷的主要赋存形式,溶解性总磷浓度平均值为0.036 mg/L,其中反应性活性磷浓度平均值为0.015 mg/L,占总磷浓度的13%;太湖水体总磷的赋存量介于410~1098 t之间,56个季度的平均值为688 t,其中冬季(12-2月)、春季(3-5月)、夏季(6-8月)、秋季(9-11月)平均值分别为683、604、792和673 t,夏季湖体磷赋存量明显高于其他季节.统计分析表明,蓝藻水华态势和水情要素(水位)对水相总磷、颗粒态磷等主要形态磷的赋存量影响显著,蓝藻水华态势的影响可能大于水量变化的影响.本研究表明,在水体营养盐浓度仍然充分满足蓝藻水华发生的背景下,气象水文波动所造成的湖泊水华面积及生物量的变化及大型水生植被消长带来的内源交换变化能引起水体总磷浓度剧烈变化,太湖水体磷浓度的稳定控制也依赖于蓝藻水华态势的稳定控制,由于太湖当前的蓝藻水华态势受气象水文条件变化影响甚大,短期内太湖水相总磷浓度稳定控制到0.05 mg/L的水质治理目标较难实现.治理策略上,若要实现太湖水体磷浓度的进一步明显下降,一方面需要大幅度削减外源磷负荷,另一方面需要大面积恢复沉水植被等.管理策略上,由于湖体磷浓度变化包括了较大的非人为因素影响,应将太湖总磷治理目标考核重点放在流域磷减排强度、入湖负荷等方面,科学看待气候波动等非人为因素影响下的水相磷浓度波动.  相似文献
10.
太湖梅梁湾水体中初级生产力的光学检测   总被引:3,自引:3,他引:14  
研究了1998年5月,10月,12月。1999年8月以及2001年7月和9月的太湖梅梁湾的初级生产力和光照时发现,在不同水层中,20cm左右的水深处初级生产力最大,最大初级生产力与叶绿素a的关系是Pm=0.012[Chla]-0.028[Chla](n=30),在叶绿素a与光谱之间关系以及初级生产力与光强之间关系的基础上,建立了初级生产力与光谱之间的关系,在蓝光光谱波段和红光光谱波段的Kd较大,较大,而550nm的Kd最小。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号