排序方式: 共有95条查询结果,搜索用时 88 毫秒
1.
长江中下游地区是我国淡水湖泊比较集中的地区。该地区绝大多数湖泊为浅水湖泊,所有的城郊湖泊都已经富营养化,其他湖泊的营养状况均为中营养-富营养,处于富营养化的发展中,这些湖泊富营养化的原因同流域上的人类活动有很大的关系。一方面,工业,农业和城市生活污水正源源不断地向湖泊中排放。另一方面,人类通过湖泊围垦、湖岸忖砌,水产养殖等破坏自然生态环境,减少营养盐输出途径。国际上对于浅水湖泊富营养化治理的经验表明,即使流域上的外源污染排放降到历史最低点,湖泊富营养化问题依然突出,其原因与浅水湖泊底泥所造成的内源污染有关。动力作用导致底泥悬浮,,影响底泥中营养盐的释放,也影响水下光照和初级生产力。控制浅水湖泊富营养化,除了进行外源性营养盐控制之外,还必须进行湖内内源营养盐的治理。治理内源营养盐的有效途径是恢复水生植被,控制底泥动力悬浮与营养盐释放。而要进行水生植被恢复,必须进行湖泊生态系统退化机制及生态修复的实验研究。 相似文献
2.
利用恒温震荡器构筑的模拟扰动环境,研究了太湖水-沉积物界的磷释放和吸附行为。结果表明:表层沉积物的磷酸盐释放作用在模拟扰动条件下并不十分明显,在低强度的扰动条件下未观察到释放现象,模拟高强度扰动后,出现一个相对较强的释放过程,最大释放时沉积物上覆水浓度约为低强度扰动时的3倍,最大释放时间(Tmax)可能受磷酸盐形态分布的不同而有所差异,相比较而言,磷酸盐的吸附作用表现得十分明显迅速,沉积物上覆水磷酸盐浓度在0.5h后分别0229mg/L和l0.215mg/L下降为0.05mg/L和0.013mg/L,可以看出当上覆水磷酸盐浓度较高时,吸附作用的强度远大于释放作用,在25℃,模拟中等强度(100rpm)的模拟扰动条件下,当初始磷酸盐浓度为1.01mg/L时,梅梁湾和五里湖的表层沉积物吸附容量分别为每克千重吸附0.04mg和0.050mg磷酸盐,这种较高的吸附能力对浅水湖泊的磷酸盐缓冲作用能起到积极作用。 相似文献
3.
以太湖梅梁湾1992-1999年的连续监测资料为基础,运用多元逐步回归统计方法,选择水温等15项环境理化因素与藻类叶绿素a、藻类总生物量和微囊藻生物量等3项生物因素进行逐步回归分析,找出与生物因素显著相关的环境因子,建立多元逐步回归方程,预测梅梁湾藻类生物量的变化情况,初步进行了梅梁湾蓝藻水华的预测预报,结果显示,水温和总磷为梅梁湾藻类总生物量的显著相关因子,水温、硝态氮和总氮为微囊藻一物量的显著相关因子。 相似文献
4.
随着我国湖泊生态环境越来越严峻,湖泊生态恢复也逐渐被人们所重视.实际上,湖泊生态恢复应该是一项系统工程、是通过一定程度地减缓或改善环境压力,结合某种或多种水生生物的种养措施,逐步使得生态系统向良性的或者是被改变前的状态发展,目前.湖泊生态恢复不是被单纯地理解为种草、养鱼等,就是被解释为生物群落的人为搭配或镶嵌.由于这种认识上的偏差,导致湖泊治理中有关生态修复的实践长期以来鲜有成功的实例.最后、以太湖为例,给出了湖泊局部水体生态修复达致净化水质的技术思路——通过改善环境来恢复水生植物,通过水生植物恢复来引导乍态系统向草型湖泊转变,通过水生系统恢复达到改善水质的目的.这种思路能否成功用于指导湖泊水生植物与生态系统恢复、还有待于进一步实践的检验. 相似文献
5.
太湖是位于长江下游的一个大型水湖泊,水动力过程和要素对浅水湖泊的环境演化有着复杂和深远的影响,本文基于1998年开展的有关太湖梅梁湾的水动力过程的野外调查结果,总结了梅梁湾在夏季盛行风向条件下湖流特征,发现了梅梁湾在夏季偏南风条件下,表层湖流以顺时针环流为主要特征,但在湾内靠近梁溪河口地区,流场受地形影响而有所不同,反映在叶绿素浓度和总磷、总氮浓度分布上,因受湖流影响较大而富集在梁溪河口周转,即偏 相似文献
6.
波浪水槽中研究了小波掀沙(波高8.77cm,波周期0.8s)和大波掀沙(波高12.31cm和13.29cm,波周期1.0s)对太湖沉积物悬浮及N、P营养盐释放的作用规律.结果显示:小波掀沙时,底泥并未发生大量悬浮,SS浓度最高时仅13.6mg/L;大波掀沙时,底泥大规模悬浮,SS浓度最高达达245.2mg/L水体悬浮物、营养盐浓度变化滞后波高变化1h以上.当波高改变1h后,水体悬浮物、N、P营养盐浓度才改变到相应的平衡浓度.除总磷浓度显著提高外,小波掀沙对水体N、P浓度的影响很小,大波掀沙则显著提高了水体总氮、总溶解氮、总磷、总溶解磷、氨氮(NH4 -N)、溶解性活性磷(SRP),其中NH4 -N、SRP最大增幅达30%和20%.小波和大波掀沙过程中,水体溶解氧浓度均持续增加,掀沙2h后增高2mg/L,溶解性有机碳持续下降,2h后下降33%-51%.试验结果表明,掀沙过程中水体充氧及颗粒物的絮凝、吸附作用可能是限制NH4 -N、SRP浓度增高的重要因素之一. 相似文献
7.
室内静态模拟不同温度下太湖15个湖区柱状沉积物磷酸根释放,分析了相应表层沉积物形态磷,以及梅梁湾间隙水中相关离子Al(Ⅲ)、Fe(Ⅱ)、Ca(Ⅱ)和PO43-含量的季节变化.研究表明,受陆源影响较大的泥区通常是太湖内源磷的稳定源;而在开敞度较大的湖区,由于表层沉积物胶体的物化吸附,使得温度对底泥磷释放的影响作用减弱,并易产生磷的“内汇”现象;在梅梁湾区成汇区,还加上春夏季藻类的局部超负荷需磷这一控制因素,从而使得太湖大部分泥区在一年中至少发生一次源-汇转换过程.化学热力学分析揭示,Al-P较之Fe-P和Ca-P更易在界面发生溶解可能是太湖表层沉积物Al-P与PO43-P释放速率呈显著相关(r=0.3858>r1-0.01,n=45)的内在原因.虽然沉积物中Fe-P有较高的释磷潜力,但浅水湖所营造的沉积物表层氧化层和广泛覆盖的无机胶体及粘土矿物的强吸附介质,可能是抑制沉积物中Fe-P释放成为优势的主要因素.估算太湖沉积物-水界面磷的净通量为899.4±573.6 t/a,约占太湖磷入湖量的1/4-1/2,其中成汇通量约为-91.2±42.4 t/a. 相似文献
8.
根据2001-2002水文年115条环太湖河道的同步环境监测资料,对水量及污染物通量进行了估算.全年的入湖水量为80.11×108m3,出湖水量为96.67×108m3.入湖水量主要通过西部河网以及西苕溪、望虞河等河流汇入太湖,其中西部河网的入湖量占总入湖量的60%;出湖水量主要通过太浦河、东苕溪以及东部河网汇出太湖,其中太浦河的出湖量占47%.污染物通量的估算结果是,CODMn、TN及TP的入湖总通量分别为37571t/a、28658t/a及1029t/a,出湖总通量分别为35431t/a、14600t/a及668t/a.CODMn、TN及TP入湖通量通过西部河网进入太湖的比例占63%、49%及47%;CODMn、TN及TP出湖通量通过太浦河汇出太湖的比例占51%、45%及34%.通过与上世纪90年代以前相同年型的数据进行对比,除TP外,其它各种污染物的入湖量均明显增加,且污染物在湖泊中的滞留率也显著提高.由此说明,环太湖河道入湖污染负荷的增加是太湖水环境恶化的根本原因. 相似文献
9.
采集柱状芯样,室内静态模拟不同温度下太湖沉积物铵态氮释放.结果表明,经面积加权,5℃、15℃和25℃下氮的交换速率分别为-16.0±17.6mg/穴m2·d雪、12.6±6.9mg/穴m2·d雪和34.1±20.8mg/穴m2·d雪,不同湖区其释放速率差异极大.受外源污染影响较大的水域,氮释放量随温度的升高而增加;受死亡残体沉降和分解影响明显的草藻型湖区,氮的年释放通量较大.全太湖沉积物-水界面NH4 -N的年净通量为9960.3±4960.0t,其中成汇的通量值约为-911±637.9t/a,大部分泥区在一年中至少经过了一次的源-汇转换过程. 相似文献
10.
通过对1998年5月-1999年5月的太湖梅梁湾水体中碱性磷酸酶活性及其它水化学因子的同步实地监测,初步探讨了富营养化较严重的太湖梅梁湾湖区的碱性磷酸酶活性的时空变化规律及其与藻类水华的相关性.研究表明,水体中各种形态磷之间的转化非常快.在磷的循环、转化过程中,碱性磷酸酶的作用至关重要.太湖梅梁湾各采样点水体中碱性磷酸酶的最大反应速率(Vmax)的年际变化有着显著的规律性,各点位在春季(3-4月)及夏季(7-8月)均分别出现峰值,与水体中水华出现的峰值相吻合.尤其在水体中水华暴发前的4月份,各采样点中的碱性磷酸酶的活性急剧增加,其Vmax均为年内的最大值或接近最大值,预示着水体中其它形态磷的转化速率加快,为水华的形成提供了充足的活性磷.水体中特异性碱性磷酸酶活性(总碱性磷酸酶活性/Chl.a)与水体中的PO43-存在着较好的负相关.尤其是在春季相关性更加显著,可达-0.9以上;夏季太湖梅梁湾水华暴发时,水体中的磷酸盐浓度远低于碱性磷酸酶的激发阈值,藻类体中的酶被诱导大量产生,从而使得水体中碱性磷酸酶的数量、活性急剧增加,达到较高的水平.这种短时间的有机质快速降解以及由此导致的营养盐释放,维持了水体中藻类的生长. 相似文献