首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
综合类   2篇
  2018年   2篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
微囊藻群体总RNA提取方法的比较   总被引:1,自引:0,他引:1  
微囊藻群体富含多糖类物质是影响微囊藻RNA提取的关键因素.为了获得高质量的微囊藻群体总RNA,对比分析4种针对多糖含量较高的方法——方法 1 PGTX-bead法、方法 2 CTAB-bead法、方法 3 Fast RNAPro Blue Kit和方法 4RNeasy Mini Kit对微囊藻群体总RNA的提取效果.采用琼脂糖凝胶电泳检测微囊藻群体RNA的完整性,Nanodrop ND1000分光光度计检测RNA纯度及浓度,并采用q PCR检测DNA污染情况.结果表明,4种方法都能从微囊藻群体中提取获得RNA,并在去除DNA后都可以进行RT-PCR等后续实验.方法 1 PGTX-bead提取的RNA产量最高,纯度好,DNA污染小,成本低,适合从微囊藻群体中大量提取RNA;方法 2 CTAB-bead提取的RNA样品产量也较高,但DNA污染严重,适合需要同时提取DNA和RNA的样本;方法 3 Fast RNAPro Blue Kit和方法 4 RNeasy Mini Kit提取的RNA产量都较低,但方法 4操作简单,耗时短,所检测目的基因的相对表达量较高,更适合从少量的微囊藻群体中提取总RNA.  相似文献   
2.
Rice straw is supposed to be an environment-friendly biomaterial for inhibiting the growth of harmful blooms of the cyanobacterium Microcystis aeruginosa. However, its potential mechanism is not well known. To explore this mechanism, the growth, cell viability (esterase activity, membrane potential, and membrane integrity), photosynthesis, and cell size ofM. aeruginosa were determined using flow cytometry and Phyto-PAM after exposure to rice straw extracts (RSE). The results show that doses from 2.0 to 10.0 g/L of RSE efficiently inhibited the alga for 15 days, while the physiologic and morphologic responses of the cyanobacteria were time-dependent. RSE interfered with the cell membrane potential, cell size, and in vivo chlorophyll-a fluorescence on the first day. After 7 days of exposure, RSE was transported into the cytosol, which disrupted enzyme activity and photosynthesis. The cyanobacteria then started to repair its physiology (enzyme activity, photosynthesis) and remained viable, suggesting that rice straw act as an algistatic agent.  相似文献   
3.
Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter(POM) and dissolved organic matter(DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms(dominated by M icrocystis) in a large-shallow eutrophic Chinese lake(Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon(POC, 3.05–15.37 mg/L) and dissolved organic carbon(DOC, 5.48–19.25 mg/L), respectively, with chlorophyll a(Chl a) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号