首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
大气科学   3篇
地球物理   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
刘强  王伟  肖薇  荆思佳  张弥  胡勇博  张圳  谢燕红 《湖泊科学》2019,31(4):1144-1156
作为冷季主要的天气事件,冷空气过境会改变湖泊上方的气团性质,对湖泊的水热通量产生影响,进而影响湖泊的生物物理和化学过程.以亚热带大型浅水湖泊——太湖为研究对象,基于2012-2017年5个冷季(11月-翌年3月)的太湖中尺度通量网观测数据,量化不同强度冷空气(寒潮、强冷空气和较强冷空气)对太湖水热通量的影响.结果表明:在5个冷季中,寒潮、强冷空气和较强冷空气发生的总次数分别为4、11和33次,累积持续天数分别为14、31和78天.冷空气过境显著增强太湖的水热通量,3种冷空气过境使太湖的感热通量分别增至无冷空气时的10.3、6.0和4.3倍,潜热通量分别增至无冷空气时的4.0、2.1和2.7倍.虽然冷空气影响天数仅占冷季天数的16.4%,但对整个冷季的潜热和感热通量贡献分别为34.9%和51.7%,以较强冷空气贡献最大.冷空气影响时,水-气界面的温度梯度是太湖感热通量的主控因子,而潜热通量的主控因子为风速.与深水湖泊相比,太湖等浅水湖泊对冷空气过境的响应更快,寒潮过境时尤为明显.  相似文献   
2.
荆思佳  肖薇  王伟  刘强  张圳  胡诚  李旭辉 《湖泊科学》2019,31(6):1698-1712
湖泊模型为数值天气预报模型提供热量通量、水汽通量和动量通量等下边界条件,但是不同时间尺度上湖泊水热通量变化的控制因子不同,因此有必要对湖泊模型进行多时间尺度上的离线评估.本文利用2012-2016年太湖中尺度通量网避风港站的气象资料和辐射数据驱动CLM4-LISSS模型(Community Land Model version 4-Lake,Ice,Snow and Sediment Simulator),并与涡度相关观测(Eddy Covariance,EC)结果进行对比,以年平均潜热通量模拟结果最佳为目标调整了模式中的消光系数、粗糙度长度方案,研究了该模型从半小时到年尺度上对湖表温度和水热通量的模拟性能.结果表明:模型对湖表温度的模拟在各时间尺度上均比较理想,但是模拟的日较差较小;从半小时到年尺度上潜热通量的变化趋势都能被很好地模拟出来,但在季节尺度上,潜热通量的模拟出现了秋冬季偏高、春夏季偏低的情况,季节变化模拟不准确.湖表温度和潜热通量模拟偏差的原因可能是消光系数的参数化方案.相比之下,感热通量尽管年际变化趋势的模拟值与观测值一致,但是从半小时到年尺度均被高估.特别地,冷锋过境期间,模型能较好地模拟出潜热通量和感热通量的变化趋势,但对于高风速条件下的感热通量模拟效果不佳.本文的研究结果能为湖泊模式的应用与发展提供有用信息.  相似文献   
3.
荆思佳  肖薇  王晶苑  郑有飞  王伟  刘强  张圳  胡诚 《湖泊科学》2022,34(5):1697-1711
湖泊蒸发对气候变化非常敏感, 是水文循环响应气候变化的指示因子, 因此研究湖泊蒸发的控制因素, 对于理解区域水文循环有重要意义. 本文利用太湖中尺度涡度通量网避风港站观测数据校正JRA-55再分析资料, 驱动CLM4.0-LISSS模型, 并利用2012—2017年涡度相关通量数据和湖表面温度数据检验模型模拟蒸发结果, 验证了该模型在太湖的适用性; 估算了1958—2017年间太湖的湖面蒸发量, 并利用Manner-Kendall趋势检验分析了湖面蒸发的变化趋势, 寻找太湖实际蒸发的年际变化的主控因子. 结果如下: 校正后的JRA-55再分析资料模拟的太湖蒸发与观测值之间存在季节偏差, 但是季节偏差在年尺度上相互抵消, 再分析资料可用于年际尺度太湖蒸发变化的模拟; 1958—2017年间太湖蒸发量以1977年为界, 先下降(-3.6 mm/a), 后增加(2.3 mm/a); 多元逐步回归结果表明, 向下的短波辐射是太湖1958—2017年间太湖蒸发变化的主控因子, 向下的长波辐射、气温、比湿也对湖泊蒸发年际变化有一定影响, 但是风速对蒸发量的年际变化影响不大.  相似文献   
4.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   
5.
基于地面观测和探空资料、NCEP/NCAR 1°×1°再分析资料,利用中尺度分析技术,对2008—2018年暖季(4—10月)发生在浙江中西部地区(简称浙中西)的65次强对流天气过程进行天气形势配置,得到发生在浙中西的雷暴大风、冰雹、短时强降水及混合性强对流的规律特征。结果如下:(1)浙中西强对流天气出现的大尺度环流有5种基本流型配置:干冷气流型(6.2%)、锋生切变型(13.8%)、暖湿气流型(38.5%)、副高边缘型(30.7%)、台风外围型(10.8%),并给出了每种概念模型下的主要物理机制和中尺度特征。(2)分析了不同概念模型下典型强对流天气个例,简要归纳出各种流型下的主要系统配置和演变规律,并将抽象的概念模型应用到实际预报分析中。(3)分析不同流型下强对流的阈值范围,如干冷气流型Iw大风指数平均为26.1 m·s-1,850 hPa与500 hPa温差可达27.5℃,500 hPa相对湿度平均只有15%等,提炼出相似环流形势下不同强天气的主要预报指标,为强对流预报提供量化参考。  相似文献   
6.
利用ECMWF 0.25°×0.25°再分析资料,对照浙中西的强对流概念模型,对2019年3月21日发生在浙江中西部地区(简称"浙中西")的一次雷暴大风为主的强对流过程(简称"3·21"过程)进行诊断分析、经验总结。结果表明:该过程符合浙中西锋生切变型的强对流概念模型,出现该过程的环境条件是700 hPa西南急流脉动、850 hPa偏北和偏南两支气流强烈发展、地面低压倒槽和低层湿舌增强;探空曲线表现为上干下湿,对流层中层有明显的干侵入,大风指数Iw、对流有效位能 (Convective Available Potential Energy, CAPE)和500 hPa以下垂直风切变异常偏强形成动力强迫;对比不同强对流天气有不同的预报着眼点,设定阈值或可提高预报警报效率,如雷暴大风天气大风指数Iw > 18.5 m·s-1CAPE> 1 700 J·kg-1、500 hPa的相对湿度小于46 %,冰雹天气则0 ℃层、-20 ℃层高度低于4.6 km和7.6 km且850 hPa与500 hPa气层温差高于26 ℃等,深刻理解该类强对流概念模型,是做好此类致灾性强对流潜势预报的关键点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号