首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24027篇
  免费   716篇
  国内免费   238篇
测绘学   894篇
大气科学   2112篇
地球物理   4220篇
地质学   9426篇
海洋学   2062篇
天文学   4678篇
综合类   115篇
自然地理   1474篇
  2023年   96篇
  2022年   71篇
  2021年   176篇
  2020年   297篇
  2019年   280篇
  2018年   566篇
  2017年   1050篇
  2016年   972篇
  2015年   730篇
  2014年   808篇
  2013年   1169篇
  2012年   776篇
  2011年   1158篇
  2010年   979篇
  2009年   1491篇
  2008年   1119篇
  2007年   1379篇
  2006年   1055篇
  2005年   970篇
  2004年   839篇
  2003年   972篇
  2002年   856篇
  2001年   757篇
  2000年   816篇
  1999年   756篇
  1998年   558篇
  1997年   434篇
  1996年   364篇
  1995年   325篇
  1994年   357篇
  1993年   254篇
  1992年   210篇
  1991年   191篇
  1990年   111篇
  1989年   113篇
  1988年   92篇
  1987年   127篇
  1986年   90篇
  1985年   101篇
  1984年   141篇
  1983年   68篇
  1982年   127篇
  1981年   95篇
  1980年   110篇
  1979年   100篇
  1978年   105篇
  1977年   78篇
  1976年   91篇
  1974年   100篇
  1973年   109篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.  相似文献   
2.
Hafnium isotopes of zircon represent a well-dated proxy for the evolution of magmatic systems through Earth history. Time series analysis on the hafnium isotopes of zircon reveals a hierarchy of statistically significant periodic signals spanning multiple orders of magnitude (106–109 year cycles). We attribute the hierarchy of cyclicity to organizing mechanisms of mantle and lithospheric convection at various time scales, ranging from short-term cycles in magmatism and subduction to long-term cycles related to oceans, supercontinents, and superoceans. A ∼600-Myr supercontinent cycle is the strongest signal in the global hafnium database and the phase relationship implies elevated mantle-derived magmatism during supercontinent tenure and elevated crustal reworking during plate reorganization, as expected. A half-supercontinent cycle (Wilson cycle) and a double-supercontinent cycle (superocean cycle) are also present, harmonic with the supercontinent cycle, and related to each other by amplitude modulation. Analysis of local magmatic systems of the circum-Pacific subduction girdle surrounding Pangaea reveal similar significant and harmonic cycles of ∼6 and ∼20 Myr attributed to magmatic cycles and ∼60, ∼120, and ∼240 Myr attributed to subduction cycles. All subduction systems reveal a prevalent ∼60 Myr cycle attributed to an upper mantle convective cycle that has two phase relationships, suggesting that advancing and retreating arc systems can be identified with time series analysis. The harmonic hierarchy of geodynamic cycles identified herein controlled by mantle convection on long time scales and lithospheric convection on short time scales arguably completes the picture of cyclicity in the Earth system, complimenting well-known orbital, oceanic, and astronomical cycles.  相似文献   
3.
Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.  相似文献   
4.
The Transantarctic Mountains (TAM) are one of Earth's great mountain belts and are a fundamental physiographic feature of Antarctica. They are continental-scale, traverse a wide range of latitudes, have high relief, contain a significant proportion of exposed rock on the continent, and represent a major arc of environmental and geological transition. Although the modern physiography is largely of Cenozoic origin, this major feature has persisted for hundreds of millions of years since the Neoproterozoic to the modern. Its mere existence as the planet's longest intraplate mountain belt at the transition between a thick stable craton in East Antarctica and a large extensional province in West Antarctica is a continuing enigma. The early and more cryptic tectonic evolution of the TAM includes Mesoarchean and Paleoproterozoic crust formation as part of the Columbia supercontinent, followed by Neoproterozoic rift separation from Laurentia during breakup of Rodinia. Development of an Andean-style Gondwana convergent margin resulted in a long-lived Ross orogenic cycle from the late Neoproterozoic to the early Paleozoic, succeeded by crustal stabilization and widespread denudation during early Gondwana time, and intra-cratonic and foreland-basin sedimentation during late Paleozoic and early Mesozoic development of Pangea. Voluminous mafic volcanism, sill emplacement, and layered igneous intrusion are a primary signature of hotspot-influenced Jurassic extension during Gondwana breakup. The most recent phase of TAM evolution involved tectonic uplift and exhumation related to Cenozoic extension at the inboard edge of the West Antarctic Rift System, accompanied by Neogene to modern glaciation and volcanism related to the McMurdo alkaline volcanic province. Despite the remote location and relative inaccessibility of the TAM, its underlying varied and diachronous geology provides important clues for reconstructing past supercontinents and influences the modern flow patterns of both ice and atmospheric circulation, signifying that the TAM have both continental and global importance through time.  相似文献   
5.
Barrier islands are important landforms in many coastal systems around the globe. Studies of modern barrier island systems are mostly limited to those of siliciclastic realms, where the islands are recognized as mobile features that form on transgressive coastlines and migrate landward as sea-level rises. Barrier islands of the ‘Great Pearl Bank’ along the United Arab Emirates coast are the best-known carbonate examples. These Holocene islands, however, are interpreted to be anchored by older deposits and immobile. The mid-Holocene to late-Holocene depositional system at Al Ruwais, northern Qatar, provides an example of a mobile carbonate barrier island system, perhaps more similar to siliciclastic equivalents. Sedimentological and petrographic analyses, as well as 14C-dating of shells and biogenic remains from vibracored sediments and surface deposits, show that after 7000 years ago a barrier system with a narrow back-barrier lagoon formed along what is now an exposed coastal zone, while, contemporaneously, a laterally-extensive coral reef was forming immediately offshore. After 1400 years ago the barrier system was forced to step ca 3 km seaward in response to a sea-level fall of less than 2 m, where it re-established itself directly on the mid-Holocene reef. Since that time, the barrier has retreated landward as much as 1000 m to its current position, exposing previously-deposited back-barrier lagoonal sediment at the open-coast shoreline. In modern neritic warm-water carbonate settings mobile barrier island systems are rare. Their construction and migration may be inhibited by reef formation, early cementation, and the relative inefficiency of sourcing beach sediments from open carbonate shelves. Carbonate barrier island systems likely formed more commonly during geological periods when ramps and unrimmed shelves predominated and in calcite seas, when meteoric cementation was minimized as a result of initial calcitic allochem mineralogy. As with their siliciclastic analogues, however, recognition of the influence of these transient landforms in the rock record is challenging.  相似文献   
6.
We review some issues relevant to volatile element chemistry during accretion of the Earth with an emphasis on historical development of ideas during the past century and on issues we think are important. These ideas and issues include the following: (1) whether or not the Earth accreted hot and the geochemical evidence for high temperatures during its formation, (2) some chemical consequences of the Earth’s formation before dissipation of solar nebular gas, (3) the building blocks of the Earth, (4) the composition of the Earth and its lithophile volatility trend, (5) chemistry of silicate vapor and steam atmospheres during Earth’s formation, (6) vapor - melt partitioning and possible loss of volatile elements, (7) insights from hot rocky extrasolar planets. We include tabulated chemical kinetic data for high-temperature elementary reactions in silicate vapor and steam atmospheres. We finish with a summary of the known and unknown issues along with suggestions for future work.  相似文献   
7.
The Early Jurassic period was characterized by extreme environmental changes, as reflected by major global carbon isotope anomalies and abrupt changes in oxygen isotope and elemental records of marine organisms. Available data suggest an overall warm Early Jurassic climate interrupted by periods of severe cooling, with a climatic optimum during the early Toarcian. Available geochemical studies, however, have mainly focused on the northern margin of the Tethys Ocean, so that the palaeogeographic extent of these environmental perturbations, latitudinal palaeotemperature gradients and climate belt boundaries remain poorly constrained. Here we report the first stable isotope records of brachiopod shells (δ13C and δ18O values) from the Upper Sinemurian-Middle Toarcian interval in the southern margin of the Tethys Ocean (northwest Algeria). These data were used to better constrain the palaeoenvironmental evolution of the North Gondwana margin during the Early Jurassic, which likely played an important role on supra-regional climate. The diagenetic history of the analysed brachiopod shells was monitored using scanning electron microscopy, and elemental (manganese and strontium) compositions. The brachiopod δ13C and δ18O data show very similar trends as those reported for various Tethyan regions, and record negative carbon and oxygen isotope excursions near the SinemurianPliensbachian and PliensbachianToarcian transitions and during the Toarcian oceanic anoxic event (T-OAE). Despite these similarities, the carbon and oxygen isotope records are systematically offset towards more positive δ13C values (average +0.5‰) and more negative δ18O values (−1.0‰) compared to those obtained from sites of higher palaeolatitudes in the northern Tethyan margin. These offsets suggest a spatial heterogeneity in the stable isotope composition of dissolved inorganic carbon in the Early Jurassic Ocean and a marked latitudinal temperature gradient between the southern and northern margins of the Tethys.  相似文献   
8.
9.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   
10.
There is a growing practical interest in the ability to increase the sea states at which marine operations can be safely undertaken by exploiting the quiescent periods that are well known to exist under a wide range of sea conditions. While the actual prediction of quiescent periods at sea for the control of operations is a deterministic process, the long term planning of future maritime tasks that rely on these quiescent periods is a statistical process involving the anticipated quiescence properties of the forecasted sea conditions in the geographical region of interest. It is in principle possible to obtain such data in tabular form either large scale simulation or from field data. However, such simulations are computationally intensive and libraries of appropriate field data are not common. Thus, it is clearly attractive to develop techniques that exploit standard wave spectral models for describing the quiescence statistics directly from such spectra. The present study focuses upon such techniques and is a first step towards the production of a computationally low-cost quiescence prediction tool and compares its efficacy against simulations. Two significant properties emerge for a large class of wave spectral models that encompasses the ubiquitous Neumann and Pierson Moskowitz or Bretschneider forms. Firstly, the auto-correlation function of the wave profile that are required to produce the quiescence property can be obtained analytically in terms of standard special functions. This considerably reduces the computational cost making desktop computer-based planning tools a reality. Secondly, for each class of these parametric spectra, the probability of a given number of consecutive wave heights (normalised to the significant wave heights) less than some critical value is in fact independent of absolute wave height. Thus, for a broad class of practically interesting wave spectra all that is required to obtain the statistical distribution of the quiescent periods is simple rescaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号