排序方式: 共有49条查询结果,搜索用时 89 毫秒
1.
长江中下游地区是我国淡水湖泊比较集中的地区。该地区绝大多数湖泊为浅水湖泊,所有的城郊湖泊都已经富营养化,其他湖泊的营养状况均为中营养-富营养,处于富营养化的发展中,这些湖泊富营养化的原因同流域上的人类活动有很大的关系。一方面,工业,农业和城市生活污水正源源不断地向湖泊中排放。另一方面,人类通过湖泊围垦、湖岸忖砌,水产养殖等破坏自然生态环境,减少营养盐输出途径。国际上对于浅水湖泊富营养化治理的经验表明,即使流域上的外源污染排放降到历史最低点,湖泊富营养化问题依然突出,其原因与浅水湖泊底泥所造成的内源污染有关。动力作用导致底泥悬浮,,影响底泥中营养盐的释放,也影响水下光照和初级生产力。控制浅水湖泊富营养化,除了进行外源性营养盐控制之外,还必须进行湖内内源营养盐的治理。治理内源营养盐的有效途径是恢复水生植被,控制底泥动力悬浮与营养盐释放。而要进行水生植被恢复,必须进行湖泊生态系统退化机制及生态修复的实验研究。 相似文献
2.
根据2005-2006年太湖湖泊生态系统研究站的监测结果,结合历史监测记录,评价了近5年来太湖富营养化的趋势.结果显示,从2000年以来,太湖的富营养化状况有加重趋势.主要表现在:1)与历史监测资料对比,近5年来无论梅梁湾还是湖心区,夏季水体TN、TP含量均呈增高趋势,如1992-2001年,太湖湖心区夏季(6-8月份)水体TN的平均值为1.706 mg/L (范围1.238-2.266mg/L),而2002-2006这5年间该平均值为2.344mg/L(范围1.924-2.717mg/L),明显高于前10年(p=0.005),另外,同期湖心区夏季的水体透明度则明显下降(1992—2001年夏季平均值为0.63 m,而2002-2006年则为0.34 m,p=0.003); 2)从野外调查看,太湖夏季水华暴发的范围越来越大,从2000年以前的梅梁湾、竺山湾及部分湖西区为主,发展到2006年的整个西太湖,夏季暴发水华的面积占太湖总面积的一半以上,且一年中出现水华的时间越来越长,水华出现的频率越来越高,微囊藻水华为特征的藻型生态系统在大太湖似乎越来越稳定;3)近年来太湖沉水植物分布区的面积有所下降.研究表明,太湖近年来富营养化的现状不容乐观,原因可能与近几年异常的气候和水文条件有关,也可能与水草区的不断破坏而减弱了微囊藻水华的生态竞争有关,应引起有关部门重视. 相似文献
3.
随着我国湖泊生态环境越来越严峻,湖泊生态恢复也逐渐被人们所重视.实际上,湖泊生态恢复应该是一项系统工程、是通过一定程度地减缓或改善环境压力,结合某种或多种水生生物的种养措施,逐步使得生态系统向良性的或者是被改变前的状态发展,目前.湖泊生态恢复不是被单纯地理解为种草、养鱼等,就是被解释为生物群落的人为搭配或镶嵌.由于这种认识上的偏差,导致湖泊治理中有关生态修复的实践长期以来鲜有成功的实例.最后、以太湖为例,给出了湖泊局部水体生态修复达致净化水质的技术思路——通过改善环境来恢复水生植物,通过水生植物恢复来引导乍态系统向草型湖泊转变,通过水生系统恢复达到改善水质的目的.这种思路能否成功用于指导湖泊水生植物与生态系统恢复、还有待于进一步实践的检验. 相似文献
4.
5.
大型浅水湖泊沉积物内源营养盐释放模式及其估算方法--以太湖为例 总被引:27,自引:1,他引:26
在新的野外调查和室内试验基础上,完善了有关大型浅水湖泊沉积物内源营养盐释放的模式,并在此基础上提出了太湖内源释放的估算方法.通过在太湖开展室内释放模拟实验和风浪期间底泥悬浮及上覆水中营养盐浓度变化的野外观测,提出了静态与动态二种浅水湖泊内源释放模式.静态情况下,营养盐主要通过浓度梯度扩散从沉积物进入上覆水,其释放强度受控于沉积物~水界面的温度,氧化还原环境及营养盐浓度差;动态条件下,沉积物由于动力扰动而发生悬浮,沉积物中溶解性及颗粒态的营养盐随着沉积物的悬浮而释放.虽然动态情况下总的营养盐释放较静态条件下大,但由于湍流导致水体及水土界面充氧,铁,锰等金属元素因氧化而吸附溶解性营养盐(特别是活性磷SRP)的能力增强,所以动力扰动仅引起总的营养盐释放,而不一定导致溶解性营养盐的释放.因此,在动态条件下,营养盐总释放量受控于动力扰动强度,底泥可悬浮量及沉积物中的营养盐含量;对于可溶性的营养盐,特别是SRP,其释放还受控于动力复氧的强度,沉积物中铁的含量及沉积物间隙水与上覆水中营养盐的浓度差.在此基础上,分别估算了静态和动态二种情况下沉积物内源释放量.根据实验室模拟结果,静态条件下太湖全湖一年NH4+-N释放量达1万吨左右,PO43--p释放量达900t左右;结合太湖2001年的风场观测记录,把太湖野外风浪过程分为风平浪静,小风浪,大风浪三种情况,分别占全年总日数的12%,82%,6%.在"风平浪静"条件下,其释放量根据实验室的静态释放试验来估算,而"小风浪"和"大风浪"条件下,其释放量则根据室内水槽试验得到的释放通量来估算.结果显示太湖全年释放量为总氮8.1万吨,总磷为2.1万吨;分别为外源氮磷年输入量的2~6倍. 相似文献
6.
利用210Pb、137Cs定年技术,对来自太湖不同生态和沉积特征的三个湖区的沉积物柱状样品进行了定年,用ICP—AES分析了沉积物中重金属等元素的含量,分析了太湖沉积物中重金属的累积特征及其成因.污染较重、蓝藻水华暴发频繁的梅梁湾沉积物中的重金属含量在近25年来逐年增加;太湖上游风浪较大的夹浦湖区表层10cm沉积速率大、粒度粗,除表层1cm外,1—10cm沉积物中各种重金属含量都较低,且层间变化剧烈;下游湖区正逐渐草型化的胥口湾除表层3cm外,沉积物中重金属的含量自底层向表层大致呈不断下降的趋势.研究表明,不同年代的太湖沉积物中重金属含量差异很大,明显大于不同湖区间沉积物重金属平均含量间的差异.水动力作用引起的沉积物粒度分异很可能是影响沉积物中重金属积累的一个重要因素.总体上太湖沉积物中重金属的污染比较轻微,但已经有一定程度的Cd污染,梅梁湾沉积物中自上世纪70年代开始明显积累Cd,其他重金属元素的积累也逐渐增加,值得关注. 相似文献
7.
浅水湖泊内源磷负荷季节变化的生物驱动机制 总被引:19,自引:5,他引:14
由于磷是重要的生源要素,过量的磷促进浮游植物(包括有毒蓝藻)的生长而使水质恶化,水-泥界面的磷交换机制受到广泛关注.一般认为沉积物的磷释放模式在浅水湖泊和深水湖泊之间有很大的差异.在探讨沉积物中磷释放机制时,人们一直最关注的要素为铁和氧及其相关的环境因子(如扰动、分解),但是浅水湖泊中磷含量变化的大部分结果仍然无法解释.通过对欧洲温带浅水湖泊和亚热带气候的长江中下游浅水湖泊中有关沉积物磷释放模式的野外和实验研究结果的分析,认为在浅水湖泊内源磷负荷季节变动模式的驱动因子中,pH可能比溶氧更为重要,即浮游藻类的光合作用增强时导致水体pH值的上升,这又可改变沉积物表面的pH,从而促进沉积物中磷(特别是铁磷)的释放并基于藻类水华对沉积物中磷的泵吸作用,首次提出了浅水湖泊中内源磷负荷的季节波动与营养水平密切相关主要是由于藻类光合作用驱动的新的观点.此外,浅水湖泊中藻类水华对沉积物磷的选择性泵吸作用,一方面圆满地解释了为何在超富营养的武汉东湖通过非经典的生物操纵于20世纪80年代中期消除了东湖的蓝藻水华后水柱中总磷和活性磷含量均显著下降,另一方面也解释了为何在许多欧洲湖泊的群落季节演替过程中出现的春季浮游植物较少的清水期或通过经典的生物操纵降低浮游植物的现存量均可显著地降低湖水中的磷含量.相对于深水湖泊来说,浅水湖泊生态系统结构的改变引发的浮游植物的兴衰,能对水-泥界面磷的交换能产生更显著的影响.也就是说,生物的生命活动同样可以驱动沉积物中营养盐的释放,而且在浮游植物丰富的富营养化浅水湖泊中,这种静态释放作用更为明显. 相似文献
8.
富营养化和风浪是影响大型浅水湖泊浮游植物群落的重要因素,本文于2003年10月至2004年9月对太湖梅梁湾和五里湖理化环境因子(水温、透明度值、悬浮质浓度和氮、磷营养盐浓度)和浮游植物群落进行了逐月监测,通过对两个湖区理化因子和浮游植物群落结构在周年内季节变化的比较研究,探讨富营养化程度以及风浪对浮游植物群落结构的影响,结果为:(1)梅梁湾由于受风浪影响悬浮物含量较高,五里湖则富营养化水平更高.(2)周年内五里湖浮游植物平均生物量(6.85 mg/L)高于梅梁湾的平均生物量(4.99 mg/L),两个湖区都呈现夏秋高峰、冬季低谷的变化特征.梅梁湾浮游植物群落季节演替的模式基本为:冬季硅藻(小环藻属Cyclotella spp.)和隐藻(隐藻属Cryptomonas spp.)-春季绿藻(细丝藻属Planctonema sp.)-夏季绿藻(绿球藻目Chlorococcales种类)和蓝藻(微囊藻属Microcystis spp.和浮游蓝丝藻属Planktothrix spp.)-初秋蓝藻(微囊藻属)和硅藻(浮游直链硅藻Aulacoseira spp.)-秋季隐藻(隐藻属).五里湖的季节演替模式没有梅梁湾明显,全年隐藻(隐藻属)都占优势,在此基础上,秋冬季硅藻(小环藻属和浮游直链硅藻属)占优势,裸藻(裸藻属Euglena spp.)在冬春季占优势,绿藻(绿球藻目种类和团藻目衣藻属Chlamydomonas spp.)在整个春季和初夏的优势地位在夏季被蓝藻(微囊藻属和浮游蓝丝藻属)所取代.群落构成的差异是浮游植物对两个湖区不同风浪条件和富营养化水平的响应结果.(3)通过与PEG(Plankton Ecology Group)模式的比较,梅梁湾和五里湖浮游植物群落的季节演替主要受水温、光照、营养盐(氮、磷)浓度和浮游动物牧食等因子的影响,因此,大型富营养化浅水湖泊浮游植物群落演替规律需要进一步的研究. 相似文献
9.
浅水湖泊沉积物磷释放的波浪水槽试验研究 总被引:16,自引:1,他引:15
为探索浅水湖泊水动力扰动作用对沉积物内源营养盐释放的规律,采用波浪水槽试验研究了波浪扰动对太湖和巢湖沉积物悬浮和磷释放的作用.试验结果显示在强波浪扰动下,底泥大规模悬浮,使得水体中悬浮固体(SS)、总磷(TP)和溶解性总磷(DTP)含量显著升高,太湖和巢湖底泥水槽试验中上覆水体TP含量分别升高了6倍和3倍,DTP分别升高了1倍和70%,太湖底泥试验中溶解性活性磷(SRP)含量亦升高了25%.掀沙过程中,不但表层底泥间隙水中的溶解性磷释放到上覆水体当中,沉积物颗粒所吸附的磷也大量转化为SRP而解吸释放.然而,强波浪掀沙一段时间后,溶解态磷的释放逐渐受到限制.随着波浪扰动作用的持续,悬浮物的中值粒径减小,细颗粒组分的百分含量明显增加,使得悬浮物对溶解态磷的吸附能力增强;波浪扰动显著提高了水体的溶解氧浓度,也会促进水体铁锰物质的氧化,增大其对磷酸根离子的吸附能力.这些变化可能是波浪掀沙后期限制水体SRP浓度进一步升高的主要原因.太湖底泥波浪水槽试验的结果与太湖梅梁湾中心区域常见风浪扰动下底泥的悬浮起动情况相吻合,底泥起动的临界切应力也基本相同,强波浪掀沙的切应力条件及水体SS,TP及SRP浓度变化的特点也一致,表明本实验的结果接近太湖的实际状况.本研究说明太湖的水动力扰动能显著提高水体TP及SRP浓度,大波掀沙初期对底泥磷释放的影响最大,后期的影响强度则有所下降. 相似文献
10.
长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征 总被引:15,自引:0,他引:15
回顾了有关长江中下游地区湖泊水、生物、沉积物中营养盐的迁移、转化、循环和交换等研究工作进展.典型湖泊的研究结果显示,历史上长江中下游地区湖泊的营养本底的确较高,处于中营养和富营养状态;人类活动在最近几十年中加快了这些湖泊的富营养化进程.长江中下游地区湖泊的治理不仅要重视外源污染的削减,也要重视湖泊内源污染的控制.长江中下游地区的浅水湖泊沉积物中,一般只有30%以下的磷是以较活跃的藻类易利用态存在的,表层沉积物通过吸附-解吸等交换作用对浅水湖泊水体中磷的浓度有较大的影响.长江中下游浅水湖泊沉积物中的营养盐释放主要有静态和动态二种释放方式.前者是基于化学平衡条件下的水土界面扩散作用.决定其释放量大小的主要因子是孔隙水与上覆水之间的营养盐浓度差.后者是基于水动力扰动对水土界面物理破坏条件下的底泥悬浮释放作用.二种释放模式在浅水水体中都存在.无论是静态或动态,水土界面的氧化还原环境,铁、锰、铝等元素含量,都对释放有影响.动态释放能在短期内大大提高水体颗粒态营养盐的浓度.在动态释放的初期,将有效增加水体可溶性营养盐,但是如果沉积物中铁、铝等金属元素较丰富,水体中的溶解性营养盐将由于吸附等作用而沉淀至湖底,因此,这样的湖泊往往具有较强的自我净化能力.长江中下游地区绝大多数湖泊都属于这种类型的湖泊.用底泥疏浚方法来控制湖泊内源污染的方法只适用湖泊面积较小、还原环境强烈,或者沉积物中铁、锰含量较低、水体去除可溶性营养盐的能力较弱的水体.此外,长江中下游地区的浅水湖泊生态系统对富营养化也具有强烈的反馈作用.水华暴发期间蓝藻的暴发性生长能通过改变水体的pH而引发沉积物中磷释放数量的大幅增加,大量释放的营养盐反过来又会促使蓝藻的大量生长,从而加剧水华的暴发.研究显示污染相对较重的水域水体中营养盐的含量高,微生物的生物量及生产力也高,碱性磷酸酶的活性也高,水体营养盐的循环也就更快.这反过来又促使微生物生产力增加,营养盐循环更快,加剧富营养化的危害.今后的工作应该重点围绕生物参与下营养盐的迁移转化等方面开展工作. 相似文献