首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1742篇
  免费   358篇
  国内免费   189篇
测绘学   453篇
大气科学   360篇
地球物理   523篇
地质学   274篇
海洋学   228篇
天文学   232篇
综合类   189篇
自然地理   30篇
  2024年   3篇
  2023年   57篇
  2022年   79篇
  2021年   77篇
  2020年   68篇
  2019年   79篇
  2018年   44篇
  2017年   60篇
  2016年   60篇
  2015年   70篇
  2014年   111篇
  2013年   112篇
  2012年   125篇
  2011年   125篇
  2010年   100篇
  2009年   109篇
  2008年   145篇
  2007年   104篇
  2006年   96篇
  2005年   72篇
  2004年   90篇
  2003年   70篇
  2002年   70篇
  2001年   60篇
  2000年   43篇
  1999年   30篇
  1998年   37篇
  1997年   23篇
  1996年   28篇
  1995年   13篇
  1994年   20篇
  1993年   18篇
  1992年   15篇
  1991年   11篇
  1990年   17篇
  1989年   12篇
  1988年   2篇
  1987年   7篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1957年   3篇
  1954年   2篇
排序方式: 共有2289条查询结果,搜索用时 15 毫秒
1.
水声目标识别技术是水声信号处理的重要组成部分,是水声信息获取与水声信息对抗的重要技术支撑。针对水声目标识别时探测数据量大、自动化程度不高、识别效率低下等问题,研究了深度学习在水声目标识别中的应用。首先,介绍了水声目标识别技术的研究现状及当前形势下面临的挑战。然后,对深度学习的网络结构原理及改进型进行了分析,并分别对深度学习在水声声信号识别领域和水声图像信号识别领域的应用现状做了阐述。最后,指出了由于受当前技术条件和水下复杂环境的制约,此方法尚且存在着不足之处。该方法为进一步优化深度学习算法、拓展深度学习技术应用范畴、提升水声目标识别效率提供了参考。  相似文献   
2.
在油气田开发过程中,微震监测是获得水力压裂引起裂缝分布的一种较为有效的方法。微震的定位成像与裂缝解释需要利用有效微震信号位置,而微震信号具有低信噪比的特点,传统信号拾取方法无法有效实现较低信噪比条件下初至时刻的准确拾取。本文提出一种基于时频谱熵的初至拾取新方法,该方法首先通过S变换获取含噪信号的时频谱;然后对谱内各个采样点沿频率方向进行分帧操作,并计算每帧频段内的近似负熵值,以最小近似负熵值作为该谱点的负熵值;最后沿时间方向比较各谱点的负熵值,最小值对应的时刻即为初至时刻。本文利用不同信噪比的合成地震数据对该方法进行效果验证,并与长短时窗能量比(STA/LTA)法进行拾取结果对比,结果表明:信噪比在-5 dB时,两种方法拾取效果都很好;信噪比在-10 dB时,时频谱熵法拾取效果更好。时频谱熵法更适合低信噪比情况下的信号初至拾取。  相似文献   
3.
本文针对2015年4月15日发生在南北地震带北端的阿拉善左旗5.8级地震,利用乌海台、东升庙台、石嘴山台的连续数字地震波形资料,采用快速傅里叶变换对三个台站的2015年4月1日00时—4月15日23时波形数据进行分析,并持续跟踪0~0.25 Hz包络幅值极大值的变化形态。结果显示:(1)在5.8级地震前,震中附近的乌海地震台、东升庙地震台、石嘴山地震台记录的地震波形均出现频谱向低频偏移的现象;(2)三个台站出现低频异常的包络幅值极大值跟踪形态不一致,其中只有乌海台在震前出现明显的持续不稳定异常,异常持续时间约120h;(3)三个台站距离震中由近及远包络幅值极大值的跟踪形态差异明显。  相似文献   
4.
北京时间2017年6月24日5时39分左右,四川省茂县叠溪镇新磨村发生大型岩质滑坡.体积约4.3×106 m3的巨型岩体从山顶脱落,顺坡滑行约2.6 km后破碎沉积;碎屑物掩埋了整个新磨村,造成了巨大的人员伤亡和财产损失.本文使用来自滑坡周围的10个地震台站的宽频带观测资料的长周期信号反演了这次滑坡的受力时间函数;同时使用逐步细化的格点搜索方法得到了滑坡的位置,与其真实位置一致;根据反演的受力时间函数计算了滑坡过程中滑体的运动学参数,得到的滑体运动轨迹与实际路径吻合.综合分析地震信号、受力时间函数和运动学参数表明,本次滑坡主运动的持续时间约为79 s;脱落岩体在5∶38∶50.2启动后持续加速,在5∶39∶37.2达到速度峰值,约为52.1 m·s-1;这段时间内岩体没有明显的破碎;之后,岩体开始铲刮并裹挟古滑坡造成的碎屑沉积物,自身也开始破碎解体,总体开始减速运动,直到5∶40∶9.2主运动停止;此后,小规模的碎屑散落又持续了约10 s的时间.  相似文献   
5.
6.
我国每天有数千趟高铁列车驰骋在纵横交错的高铁线路上,构成了十分理想的均布震源,但寻找适合高铁震源地震信号的处理方法是充分挖掘信息的关键.传统的频谱分析结果表明高铁震源所产生的地震信号具有明显的窄带分立谱特征,但无法精确获得高铁震源地震信号的时频变化规律.本文首次将挤压时频分析这种分析工具引入到高铁震源地震信号处理中,对中国南方某高铁沿线采集到的高铁震源地震数据进行了分析.处理结果表明:利用挤压时频分析能够更加精确地刻画频率成分随时间的变化,能够利用单检波器精确刻画高铁列车的运行状态(匀速、加速等);同时利用挤压时频变换还可高精度地重构出所需频带的信号,为提取高铁震源地震信号的特征成分提供了一种有力工具.  相似文献   
7.
孙娇  聂力  苗亮  陈炯 《海洋与湖沼》2020,51(5):1182-1193
脾脏酪氨酸激酶(SYK)是一种非受体型酪氨酸激酶(non-receptor tyrosine kinase, NRTK)。在哺乳动物中,SYK是重要的细胞信号通路接头分子,其在免疫细胞活化,胞外刺激的信号转导和病原体识别等多种生命过程中扮演重要角色,然而在鱼类中却鲜有报道。本研究以香鱼(Plecoglossus altivelis)为研究对象,探讨了其SYK(PaSYK)在应对病原微生物感染及在活化免疫信号通路中的作用。我们克隆获得了香鱼SYK的cDNA序列,并利用多重序列比对、构建进化树等生物信息学方法分析PaSYK的进化地位;采用实时荧光定量PCR(RT-qPCR)方法分析PaSYK在健康组织及鳗弧菌(Vibrio anguillarum)感染后的表达变化;亚细胞定位检测PaSYK在HEK293T细胞的分布情况;在香鱼头肾单核/巨噬细胞(Monocyte/macrophage,MO/MΦ)中过表达PaSYK,研究其对炎症细胞因子表达的调控作用并在HEK293T细胞及香鱼头肾MO/MΦ中研究PaSYK对MAPK信号通路的活化作用。多重序列比对结果显示,SYK的蛋白质序列和结构域在进化过程中是高度保守的。系统进化树结果表明, PaSYK与河鳟的亲缘关系密切。RT-qPCR结果表明, SYK基因mRNA在检测的所有组织中均有表达,鳗弧菌感染后免疫相关组织中PaSYK表达量均上调。此外,PaSYK能显著诱导香鱼头肾MO/MΦ中促炎因子TNF-α和IL-1β的表达,但对抑炎因子TGF-β和IL-10的表达起到略微的抑制作用。Western blot结果证明PaSYK可以激活MAPK信号通路。综上所述, SYK分子在进化上高度保守,香鱼SYK与其哺乳动物中的同源物具有保守的功能,均能活化MAPK信号通路并在炎症反应中发挥作用。  相似文献   
8.
香港经常受到西北太平洋热带气旋的影响,对该地区热带气旋持续时间的研究有助于经济社会的稳定发展。按照气象和天文台警告信号,热带气旋分为不同的强度等级。建立热带气旋持续时间的Poisson-Weibull复合分布模型,相应获得持续时间重现值的求解公式,分别用于不同热带气旋分类下持续时间多年一遇重现值的计算中。基于1987-2016年袭港热带气旋数据的分析结果表明,Poisson-Weibull分布适用于不同的持续时间分类样本;强的热带气旋经常会伴随较长的持续时间,这将会对该地区造成更为严重的破坏,这可为防灾减灾提供参考。  相似文献   
9.
目的:运用网络药理学预测薤白治疗肺癌有效成分的作用靶点及通路。方法:通过TCMSP数据库获取薤白有效成分及作用靶点,并运用Cytoscape 3.7.1软件构建靶点间相互作用网络并进行关联分析,R×64 3.5.3软件及相应脚本筛选出薤白治疗肺癌的有效成分及作用靶点,生物信息学技术富集通路及生物过程。结果:预测得到薤白治疗肺癌有效成分11个和有效靶点30个,并推断其作用机制可能与AGE-RAGE、PI3K-Akt等信号通路有关,且JUN、MAPK1、MAPK3 等靶点基因可能起着关键性的作用。结论:基于网络药理学探讨了薤白治疗肺癌多成分-多靶点-多通路的作用特点,为进一步开展薤白治疗肺癌作用机制的研究提供了新的思路和方法。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号