首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   40篇
  国内免费   38篇
测绘学   7篇
大气科学   16篇
地球物理   48篇
地质学   129篇
海洋学   28篇
天文学   1篇
综合类   15篇
自然地理   3篇
  2023年   5篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   7篇
  2014年   10篇
  2013年   4篇
  2012年   12篇
  2011年   13篇
  2010年   10篇
  2009年   16篇
  2008年   6篇
  2007年   13篇
  2006年   6篇
  2005年   10篇
  2004年   11篇
  2003年   11篇
  2002年   11篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   8篇
  1988年   1篇
  1959年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
1.
为了在较宽频域内研究砂岩衰减变化,实验在13.2MPa的初应力水平下,测得了蠕变(1小时~3天)和超声波(470 KHz、700KHz)频率下干燥的大庆、紫蓬山砂岩衰减.发现蠕变衰减随蠕变时间增大而增大,且均大于超声波频率下的衰减,最小相差亦有40%.将衰减与应力作用频率关系转化为衰减与蠕变量关系后,二者线性相关,相关系数大于95%.且据此将蠕变量向超声波频率对应的应变量外推所得的衰减值与实验测得的衰减值符合较好.实验得到的应变量与衰减的线性关系,解释了已有的0.1~1 MHz下衰减近似常量的事实,亦可预测岩石从蠕变破裂所对应的最低频率到MHz频率范围内衰减变化.  相似文献   
2.
超声波测风仪与气象业务用风向标测风仪相比具有诸多优势,可为气象业务中风向风速观测急需解决的较多问题提供解决方案。为促成超声波风速仪尽早在气象部门业务应用,同时解决资料同化等问题,研究和选择适用于超声波测风仪的风速平均(平滑)算法显得极为重要。为此,从超声波测风仪测量原理出发,介绍了超声波测风仪获取数据的特点;利用台站获取的超声波测风仪风速的秒数据,采用不同时段、不同平均(平滑)方法,计算风速多种形式的平均值,通过统计、分析和比较,获得了标量和矢量不同算法下风速平均值的特性差异及其之间的误差,进一步验证了标量平均大于矢量平均的结论。通过对超声波测风仪的风速算法研究及其误差分析,对减小因算法带来的风速测量误差提供方法,同时探讨了超声波测风仪在气象业务使用的可能和方向。  相似文献   
3.
为了更好地实现煤矿井下瓦斯抽采钻孔端流量监测,针对管路内介质成分复杂、纯净度差、稳定性差等因素对抽采流量参数测量准确性影响的问题,提出以时差法为测量原理,以双阈值比较法为检测方法,设计了一套矿用钻孔超声流量自适应检测系统。通过分析影响双阈值比较法测量准确性的关键问题出发,设计了检测系统的总体方案,并对其中激励信号放大电路、接收信号调理电路及由峰值检波电路与增益控制电路构成的自适应电路几项关键模块进行了详细地介绍,叙述了检测系统运行软件的工作流程。通过工况环境适应能力测试与准确度性能检验,对检测系统的功能与性能进行了检验,检验结果表明,该系统能够适应瓦斯抽采钻孔管路内的工况需求,实现高精度的气体流量测量。   相似文献   
4.
为深入研究脉冲超声波激励对煤体孔隙结构的改造效应,利用含瓦斯煤体超声波激励实验系统,开展超声波功率800和1 000 W持续、交互脉冲下煤的超声波激励实验,综合低压CO2吸附、低温N2吸附和高压压汞等实验,研究煤的大孔(>50 nm)、介孔(2~50 nm)、微孔(<2 nm)全孔径段的孔隙参数演化规律。实验结果表明:脉冲超声波对煤的孔隙具有扩孔效应,煤的孔容占比以微孔和大孔为主,介孔占比最小,煤中各孔径段比表面积大小为:微孔>介孔>大孔;与未超声、持续超声激励煤样相比,脉冲超声波激励煤的各孔径段孔容和比表面积均有所提高;随脉冲次数增加,煤的孔容增幅和比表面积增幅呈正线性增大,其中大孔的孔容和比表面积增幅较为显著。脉冲超声波激励煤样形成水锤压力阶段和滞止压力阶段的持续转换,增加了煤的孔隙结构损伤程度。研发脉冲超声波发射器结合水力化技术,可提高煤的孔隙发育程度,增加煤体渗透性,提高瓦斯抽采效率。  相似文献   
5.
深部矿井开采极易诱发矿柱型岩爆,矿柱型岩爆严重威胁着矿山的安全高效开采,为探究矿柱型岩爆破坏机制和前兆信息,选用自贡红砂岩进行单轴压缩试验,并采用主动超声和被动声发射对破裂过程进行监测,联合主动超声与被动声发射监测数据对波速进行层析成像反演,分析试样破裂过程中波速演化规律。研究结果表明:砂岩试样在加载过程中速度模型呈现高度非均质性,在加载过程中会出现低速区,且声发射事件集中出现在低速区内部;P波速度离散度可反映全局波速变化特征,在峰值附近变化剧烈,随荷载增加P波速度离散度持续增大;声发射事件在峰前、峰后定位结果相差较大,峰前阶段声发射事件随机分布,峰后阶段声发射事件定位结果集中。此外,研究发现选用均质速度模型进行声发射事件定位会增大定位误差,试样最终失稳前b值的降低表明试样大尺度裂纹活动加剧,导致岩石非均质性增大,也间接证明了采用非均质速度模型进行声发射震源定位的必要性。该研究结果可用于现场矿柱稳定性监测,定期反演获得矿柱波速变化为矿柱型岩爆提供先兆预警信息。  相似文献   
6.
岩石中超声波横波声学参数与力学参数密切相关,利用超声波横波传播特性可以反演岩石力学参数,但目前相关研究成果较少,因此需要深入开展岩石中超声波横波传播特性的研究。本文以灰砂岩、红砂岩和黄砂岩为研究对象,开展50 kHz、100 kHz和200 kHz频率下超声波横波传播试验;提取波速、主频和最大幅值等声学参数进行砂岩中超声波横波的传播特性研究;通过归一化处理,分析了3种声学参数对弹性模量变化的敏感性。结果表明,在3种砂岩中,横波波速、主频都随入射频率和弹性模量增大呈非线性递增趋势,最大幅值随入射频率呈降低趋势,而弹性模量和入射频率对3种声学参数变化率的影响呈现出不同规律;整体分析发现最大幅值对砂岩弹性模量变化的敏感性最强,基于最大幅值建立了砂岩弹性模量的估算公式;基于波形、信噪比、相关性的综合考虑,建议今后采用50 kHz作为砂岩超声波横波测试的入射频率。研究成果可以为超声波测试技术的发展提供参考。  相似文献   
7.
振动有助于碎岩,以往关于振动碎岩机理的研究大多在低频率段展开。为填补超高频率段下振动碎岩机理的空白,采用单轴动静组合加载模式,开展了超声波振动下不同应力条件对岩石强度影响的试验研究,其中超声波振动频率为20 kHz,预压范围为100~500 N。研究结果表明:当预压小于200 N时,岩石内部应力状态无法满足强度准则,岩石强度下降不明显;当预压大于等于200 N时,岩石强度随振动时间的增加而逐渐降低且存在最优预压力值(400 N)使得岩石强度最低。缩短振动频率与岩石固有频率的差值有利于提高超声波振动碎岩效率。  相似文献   
8.
循环冻融条件下安山岩和花岗岩的物理力学特性试验研究   总被引:5,自引:0,他引:5  
结合青藏铁路块石护坡路基处于青藏高原特殊的气候条件,对用于青藏铁路护坡的两种主要岩石(花岗岩和安山岩)进行循环冻融试验.结果表明:两种岩石在经历了数次冻融循环后都出现了微细裂纹;声波监测表明,超声波速同冻融循环周期呈指数下降关系,显示了冻融循环对岩石风化的影响以及循环后岩石物理力学参数变化的趋势.结果说明,花岗岩的冻融...  相似文献   
9.
提高气介式超声波水位计测量精度的探讨   总被引:1,自引:0,他引:1  
黄新建  周五一 《水文》2011,(4):71-75
分析了影响气介式超声波水位计水位测量精度的各种因素,提出了消除这些影响因素的对策措施。其中,对超声波水位计测量回波因距离、反射角和发射面的变化带来的误差进行了分析,提出了一种利用数字采样技术对超声波测量回波前沿进行分析补偿来提高测量精度的方法。采用该技术的气介式超声波水位计在回波信号强弱变化时,数据重复性明显提高,使较短时间的采样就可获得较好测量精度,适合野外功耗要求小而采用间歇工作的方式。  相似文献   
10.
《岩土力学》2015,(Z1):25-30
选取东南沿海某建筑工程地基浅层残积土为试样,运用超声波岩土损伤检测技术,测试计算在不同冲击荷载作用下试样纵波波速。选用纵波波速为损伤变量进行损伤度计算,分析了冲击荷载冲击频率、冲量等参数对试样损伤度的影响关系。同时结合试样试验破坏实际情况,分析了冲击荷载作用下试样损伤演化破坏特性。结果表明,随着冲击频率和冲量的增大,残积土试样损伤度都有增大上升趋势;随着损伤度的增加,残积土冲击损伤演化过程可分为小变形、端部出现裂纹、前端1/3处鼓胀或出现裂纹、前端裂纹扩展与表面剥落等几个不同破坏阶段。研究结论为揭示动荷载作用下残积土动力损伤演化规律提供科学依据和量化参数。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号