首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20001篇
  免费   2620篇
  国内免费   1147篇
测绘学   9555篇
大气科学   391篇
地球物理   4891篇
地质学   5426篇
海洋学   1413篇
天文学   645篇
综合类   1187篇
自然地理   260篇
  2024年   8篇
  2023年   314篇
  2022年   429篇
  2021年   556篇
  2020年   436篇
  2019年   625篇
  2018年   440篇
  2017年   528篇
  2016年   500篇
  2015年   582篇
  2014年   1037篇
  2013年   783篇
  2012年   1018篇
  2011年   920篇
  2010年   814篇
  2009年   913篇
  2008年   1025篇
  2007年   813篇
  2006年   800篇
  2005年   774篇
  2004年   765篇
  2003年   783篇
  2002年   668篇
  2001年   692篇
  2000年   672篇
  1999年   627篇
  1998年   714篇
  1997年   753篇
  1996年   746篇
  1995年   676篇
  1994年   576篇
  1993年   540篇
  1992年   615篇
  1991年   512篇
  1990年   469篇
  1989年   341篇
  1988年   65篇
  1987年   29篇
  1986年   24篇
  1985年   22篇
  1984年   31篇
  1983年   13篇
  1982年   25篇
  1981年   9篇
  1980年   16篇
  1979年   10篇
  1978年   5篇
  1975年   5篇
  1958年   5篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2021年2月13日日本本州东海岸MW7.2地震矩心矩张量解   总被引:1,自引:0,他引:1       下载免费PDF全文
张喆  许力生 《地震学报》2021,43(2):255-259
根据美国地质调查局(United States Geological Survey,缩写为USGS)国家地震信息中心(National Earthquake Information Centre,缩写为NEIC)的测定,2021 年2 月13 日14 时7 分50 秒( UTC) ,日本本州以东发生了一次矩震级高达 MW7.2 的地震,震中位于( 37.745°N, 141.749°E),震源深度为 49.94 km,这是截至本文发稿时最终更新的定位结果,更新前为(37.686°N,141.992°E),震源深度为54.0 km.美国地质调查局(USGS,2021)和全球矩心矩张量组( GCMT, 2021)随后发布了这次地震的矩心矩张量解(表1).震后48小时内累计发生M>2.5 余震13 次,其中最大的余震震级达到MW5.3,主震和余震的深度分布在35—65 km之间.该事件所在区域曾于2011 年3 月11 日发生过MW9.1 特大地震(Duputel et al,2012a)并引起破坏性海啸,相较于2011年MW9.1事件,本次事件的位置更靠近西侧,发生在俯冲带较深的区域.  相似文献   
2.
熊伟  黄婧  刘亮 《海洋测绘》2021,(6):27-30
基于天津港基础控制测量成果与EGM2008模型,采用多面函数拟合法,进行天津港三大港区的似大地水准面精化,并结合已有成果进行精度分析。结果表明,天津港似大地水准面精化的模型检核精度为±7mm,港区内高程异常跨度为0.622m,高程异常偏差由西向东逐渐减小,南北相差不大,高程异常等值线整体沿南北走向。经工程实践验证,基于天津港似大地水准面精化模型,港区内可用D级GNSS高程测量代替三、四等水准测量,可用网络RTK高程控制测量代替四等水准测量。  相似文献   
3.
本文依据分布于全国的6 824个钻孔数据,按照双参数的不同取值,将GB50011—2010《建筑抗震设计规范》(以下简称中国建抗规)的场地类别进一步划分为更加同质的子类,分析了双参数体系对场地分类结果的影响,建立了每个子类与美国《NEHRP对新建建筑和结构物的推荐地震条款》(National Earthquake Hazards Reduction Program Recommended Provisions for Seismic Regulations for New Buildings and Other Structures,以下简称美国建抗规)的场地类别的对应关系,并对比分析中、美建抗规的场地类别差异,在此基础上建立了中国建抗规与美国建抗规场地类别相互转换的概率表达。研究结果表明:用vS20近似表示中国场地分类标准的等效剪切波速并不可靠;中国建抗规中Ⅱ类场地和Ⅲ类场地内部不同子类与美国建抗规中场地类别的对应关系截然不同;中国建抗规中覆盖层厚度有效地区分了浅部波速类似而深部波速不同的场地;中国建抗规的Ⅱ类和Ⅲ类场地主体均对应美国建抗规的D类场地,中国Ⅱ类场地略偏对应美国C类场地,中国Ⅲ类场地略偏对应美国E类场地;中国Ⅳ类场地对应美国E类场地,绝大多数美国C类和D类场地均对应中国Ⅱ类场地,说明中国Ⅱ类场地的范围极宽。   相似文献   
4.
致密油气层的物性(孔隙度和渗透率)较差.针对致密储层,目前常用的氦气法孔隙度测量方法存在两个不足:器壁压变性参数G定义不明确;膨胀前压力设置普遍偏小.本次基于氦气法孔隙度测量装置岩心室的应力应变力学分析和不确定度理论分析,开发了一种面向致密储层的氦孔隙度测量方法.本次提出的方法给出了器壁压变性参数G的解析式,并基于G的解析式推导出了新的孔隙度计算公式,将刻度系数减少到1个,简化了刻度过程.其次,基于不确定度理论得到的孔隙度测量不确定度表明:氦气法测量致密储层孔隙度的膨胀前压力大于2 MPa基本可以将孔隙度绝对误差控制在0.5%以内.与高压压汞法孔隙度测量结果对比发现,该方法测量孔隙度的相对偏差在14%以内,远低于常规氦气法测量孔隙度的相对偏差(50%).  相似文献   
5.
北京时间2021年5月21日21时48分36秒,云南省大理州漾濞县发生MS 6.4地震。利用云南数字地震台网2021年5月18日至8月22日的震相报告,采用双差地震定位法,对漾濞MS 6.4地震序列进行重新定位。重新定位结果显示序列呈NW向优势分布,破裂长约20 km,宽约7 km,对重新定位结果进行误差分析,水平方向定位误差约为0.8 km,垂直方向定位误差约为1.0 km,定位结果具有较好的稳定性。依据震中分布的走向将序列划分为NW向的主断层与NNW向的分支断层,主断层存在较为明显的分段现象,分支断层呈雁列状分布。根据小震丛集性发生在大震断层面及其附近的原则,利用重新定位后的小震震源位置反演得到漾濞MS 6.4序列主断层走向约320°,倾角约89°,深度范围3~13 km。根据拟合得到的断层在地表的投影位置,推测本次地震的发震断层为维西-乔后断裂西侧的草坪断裂。基于断层滑动量分布识别出3个凹凸体,结合序列时空演化特征,分析了漾濞MS 6.4地震序列的破裂过程,结果显示断层中段的凹凸体发生初始破裂...  相似文献   
6.
针对红庆梁煤矿回采巷道变形严重问题,采用空心包体地应力测量方法对红庆梁煤矿3-1煤的地应力进行了实测,获得地应力场分布特征。应用地质动力区划法划分红庆梁井田Ⅰ—Ⅴ级断裂构造,应用“岩体应力状态分析系统”,进行应力区划分和巷道稳定性分析。研究表明:红庆梁煤矿地应力场属于以水平压应力为主导的水平构造应力场,地应力场方向对巷道稳定性影响较小;井田范围内共划分4个应力区:低应力区、正常应力区、应力梯度区、高应力区,分别占井田面积的5.9%、55.7%、27.0%、11.4%;应力大小是影响巷道稳定性的主要原因,致使处于应力梯度区和高应力区内的巷道变形严重。地应力场的分布特征分析和应力区的划分对红庆梁煤矿及类似条件矿井的采掘部署和支护设计具有重要作用。移动阅读   相似文献   
7.
8.
田振环 《地质学报》2019,93(S1):19-28
莱州市三山岛北部海域金矿区是世界上第一个查明的海域岩金矿。它通过追索延伸至海域的三山岛断裂,圈定破金找矿靶区。利用海域高精度磁测和浅地层剖面测量配合海上钻探,找到了海域大型金矿。以三山岛海域金矿普查为依托,研究出来的这套海域金矿找矿方法和海上钻探平台,可为今后开展海域金及其它与断裂有关的矿产资源找矿,提供指导和借鉴。  相似文献   
9.
将微粒群算法与位错理论模型相结合,采用中国地壳运动观测网络提供的青藏高原地区2001~2004年GPS测量数据和2000~2006年水准测量数据,通过常规定权和附有相对权比的方法对祁连山北缘断裂的三维滑动速率进行联合反演,并与蚁群算法反演结果进行对比。结果表明,微粒群算法收敛速度快、稳定性高,结合经典位错理论模型,是一种可以有效求解断层三维滑动速率反演问题的优化算法,在大地测量反演领域极具应用潜力。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号