首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   117篇
  国内免费   52篇
测绘学   86篇
大气科学   31篇
地球物理   381篇
地质学   195篇
海洋学   9篇
天文学   5篇
综合类   15篇
自然地理   70篇
  2023年   5篇
  2022年   19篇
  2021年   19篇
  2020年   21篇
  2019年   34篇
  2018年   28篇
  2017年   29篇
  2016年   32篇
  2015年   34篇
  2014年   46篇
  2013年   43篇
  2012年   34篇
  2011年   48篇
  2010年   34篇
  2009年   35篇
  2008年   24篇
  2007年   52篇
  2006年   47篇
  2005年   31篇
  2004年   27篇
  2003年   28篇
  2002年   14篇
  2001年   23篇
  2000年   6篇
  1999年   12篇
  1998年   13篇
  1997年   9篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   9篇
  1992年   9篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1984年   1篇
排序方式: 共有792条查询结果,搜索用时 15 毫秒
1.
As a signatory to the Paris Climate Agreement, Australia committed to reduce emissions significantly by 2030. In a country highly urbanised and dependent on fossil fuels as its primary energy source, one key avenue for meeting these commitments is energy transition in the built environment. Australia has emerged as a leader in the design and construction of high-performance buildings in the premium commercial office sector. In this paper, we address a significant gap in understanding the diverse mechanisms through which building energy transition is being constituted in this sector, focusing on Sydney and Melbourne. In the absence of substantive publicly available data, we draw on mixed methods comprising a database developed around high-performing CBD office buildings and qualitative interviews with a range of sectoral stakeholders. We characterise the building stock in each city, and document five trends constituting energy transitions. We demonstrate that building energy transitions are not only shaped purposefully by dominant governance regimes but also by opportunistic responses to specific material and commercial conditions and legacies in each city. Thus the urban built environment affords significant opportunity for energy transitions, but pathways towards such transitions are necessarily multiple and ultimately shaped by material as well as institutional geographies.  相似文献   
2.
An effective strategy of seismic retrofitting consists of installing nonlinear viscous dampers between the existing building, with insufficient lateral resistance, and some auxiliary towers, specially designed and erected as reaction structures. This allows improving the seismic performance of the existing building without any major alteration to its structural and nonstructural elements, which makes this approach particularly appealing for buildings with heritage value. In this paper, the nonlinear governing equations of the coupled lateral‐torsional seismic motion are derived from first principles for the general case of a multistory building connected at various locations in plan and in elevation to an arbitrary number of multistory towers. This formulation is then used to assess the performance of the proposed retrofitting strategy for a real case study, namely, a 5‐story student hall of residence in the city of Messina, Italy. The results of extensive time‐history analyses highlight the key design considerations associated with the stiffness of the reaction towers and the mechanical parameters of the nonlinear viscous dampers, confirming the validity of this approach.  相似文献   
3.
A suite of reinforced‐concrete frame buildings located on hill sides, with 2 different structural configurations, viz step‐back and split‐foundation, are analyzed to study their floor response. Both step‐back and split‐foundation structural configurations lead to torsional effects in the direction across the slope due to the presence of shorter columns on the uphill side. Peak floor acceleration and floor response spectra are obtained at each storey's center of rigidity and at both its stiff and flexible edges. As reported in previous studies as well, it is observed that the floor response spectra are better correlated with the ground response spectrum. Therefore, the floor spectral amplification functions are obtained as the ratio of spectral ordinates at different floor levels to the one at the ground level. Peaks are observed in the spectral amplification functions corresponding to the first 2 modes in the upper portion of the hill‐side buildings, whereas a single peak corresponding to a specific kth mode of vibration is observed on the floors below the uppermost foundation level. Based on the numerical study for the step‐back and split‐foundation hill‐side buildings, simple floor spectral amplification functions are proposed and validated. The proposed spectral amplification functions take into account both the buildings' plan and elevation irregularities and can be used for seismic design of acceleration‐sensitive nonstructural components, given that the supporting structure's dynamic characteristics, torsional rotation, ground‐motion response spectrum, and location of the nonstructural components within the supporting structure are known, because current code models are actually not applicable to hill‐side buildings.  相似文献   
4.
Earthquake simulation technologies are advancing to the stage of enabling realistic simulations of past earthquakes as well as characterizations of more extreme events, thus holding promise of yielding novel insights and data for earthquake engineering. With the goal of developing confidence in the engineering applications of simulated ground motions, this paper focuses on validation of simulations for response history analysis through comparative assessments of building performance obtained using sets of recorded and simulated motions. Simulated ground motions of past earthquakes, obtained through a larger validation study of the Southern California Earthquake Center Broadband Platform, are used for the case study. Two tall buildings, a 20‐story concrete frame and a 42‐story concrete core wall building, are analyzed under comparable sets of simulated and recorded motions at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Spectral shape and significant duration are explicitly considered when selecting ground motions. Considered demands include story drift ratios, floor accelerations, and collapse response. These comparisons not only yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. This study highlights the utility of physics‐based simulations, and particularly the Southern California Earthquake Center Broadband Platform as a useful tool for engineering applications.  相似文献   
5.
6.
Landslides are the most common natural disasters in mountainous regions, being responsible for significant loss of life as well as damage to critical infrastructure and properties. As the world population grows, people tend to move to higher locations to construct buildings, thereby making structures vulnerable due to landslides. This paper discusses previous research on the vulnerability assessment of structures exposed to landslides and presents a modified semi-quantitative approach to assess the scenario-based physical vulnerability of buildings based on their resistance ability and landslide intensity. Resistance ability is determined by integrating expert knowledge-based resistance factors assigned to five primary building parameters. Landslide intensity matrix defining different intensity levels is proposed based on combinations of landslide velocity and volume. Physical vulnerability of buildings is estimated and classified as class I, II or III for scenario-based low to very high landslide intensity. Finally, the application of the model is illustrated with a case study of 71 buildings from Garhwal Himalayas, India.  相似文献   
7.
Modelling uncertainty can significantly affect the structural seismic reliability assessment. However, the limit state excursion due to this type of uncertainty may not be described by a Poisson process as it lacks renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties related to ground motion representation by employing recorded ground motions together with modelling uncertainties is not a trivial task. Robust fragility assessment, proposed previously by the authors, employs the structural response to recorded ground motion as data in order to update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural model realizations and as-recorded ground motions. This can reduce the computational effort by more than 1 order of magnitude. However, it should be kept in mind that the fragility concept itself is based on the underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, considering both the uncertainty in ground motion representation based on as-recorded ground motion and non ergodic modelling uncertainties, the error introduced through structural reliability assessment by using the robust fragility is quantified. It is shown through specific application to an existing RC frame that this error is quite small when the product of the time interval and the standard deviation of failure rate is small and is on the conservative side.  相似文献   
8.
The objective of this study is to efficiently extract detailed information about various man-made targets in oriented built-up areas using polarimetric synthetic aperture radar (POLSAR) images. This paper develops an improved approach for building detection by utilizing Two-Dimensional Time-Frequency (2-D TF) decomposition. This method performs outstandingly in distinguishing between man-made and natural targets based on the isotropic behaviors, frequency-sensitive responses, and scattering mechanisms of objects. The proposed method can preserve the spatial resolution and exploit the advantages of TF decomposition; specifically, the exact outlines of buildings can be effectively located, and more types of features (e.g., flat roofs, roads, and walls that are oblique to the radar illumination) can be distinguished from forests in complex built-up areas by 2-D TF decomposition. The coarser-resolution subaperture images that are produced in the azimuth direction, which correspond to different looking angles, are beneficial for detecting man-made structures with main scattering centers oriented at oblique angles with respect to the radar illumination. In the range direction, the obtained subaperture images, which correspond to various observation frequencies, can be helpful in distinguishing flat roofs and roads from forests. This method was successfully implemented to analyze both NASA/JPL L-band AIRSAR and L-band EMISAR data sets. The building detection results of the proposed method exhibit a significant improvement over those of other methods and reach an overall accuracy over 80%, with approximately 20% higher than the accuracies of K-means clustering and the entropy/alpha-Wishart classifier and approximately 10% higher than the accuracy of the support vector machine method. Moreover, building details can be precisely detected, obliquely oriented buildings can be identified, and the distinction between buildings and forests is significantly improved, as both visually and statistically indicated. This method is highly adaptable and has substantial application value.  相似文献   
9.
In this study,dynamic responses of two buildings connected by viscoelastic dampers under bidirectional excitations are extensively investigated.The two buildings are a 10-story building and a 16-story building,with the shorter building on the left.Viscoelastic dampers are installed at all fl oors of the shorter building.Equations of motion are formulated using a fractional derivative model to represent the viscoelastic dampers.Three cases are considered with mass eccentricities at 0,10% and-10% with respect to the dimensions of the buildings.The responses of the buildings are numerically predicted at different damper properties.The simulation results indicated that the maximum horizontal responses of the buildings without eccentricities are signifi cantly mitigated.However,torsional effects are adversely increased.For asymmetric buildings,the effectiveness of the connecting dampers is affected by building eccentricities.As a result,mass eccentricities must be taken into account in damper selection.When compared with vibrations induced by unidirectional excitations,bidirectional excitations can increase the responses of coupled asymmetric buildings.In addition,installing dampers only at the top fl oor of the shorter building may cause a sudden change in lateral stiffness of the taller building.Consequently,the story shear envelopes of the taller building are changed.  相似文献   
10.
Most current seismic design includes the nonlinear response of a structure through a response reduction factor(R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modern seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual ‘R' value for engineered design/construction of reinforced concrete(RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号