首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  完全免费   6篇
  地球物理   31篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有31条查询结果,搜索用时 62 毫秒
1.
利用区域台网地震资料,分析了川西安宁河-则木河断裂带不同段落的现今活动习性,进而鉴别潜在大地震危险的断裂段.文中由异常低b值的分布圈绘出凹凸体,发展和应用了由多个地震活动参数值的组合判定断裂分段活动习性的方法,尝试了利用凹凸体段的震级-频度关系参数估计特征地震的平均复发间隔.结果表明,该研究断裂带存在5个不同现今活动习性的段落.其中,安宁河断裂的冕宁-西昌段属于高应力下的闭锁段,其核心部分为一较大尺度的凹凸体; 则木河断裂的西昌-普格段则表现为低应力下的微弱活动状态.重新定位的震源深度分布,显示出上述闭锁段和微弱活动段的断层面轮廓.冕宁-西昌段是未来大地震的潜在危险段.该段从最晚的1952年6.7级地震起算,至未来特征地震的平均复发间隔估值为55~67年,未来地震的震级估值为7.0~7.5.本研究也初步表明,同一断裂段的活动习性可随时间动态演变.  相似文献
2.
川滇活动地块东边界强震危险性研究   总被引:15,自引:1,他引:14       下载免费PDF全文
以川滇活动地块东边界为例,利用最近31年的地震资料,根据精细b值计算结果,研究该边界断裂带的应力空间分布及其强震危险性.研究结果显示:(1)沿川滇活动地块东边界,b值空间分布显示在不同断裂以及同一断裂不同断裂段存在较大差异,从而反映出应力积累水平的空间差异.(2)小江断裂带主干断裂上的嵩明凹凸体及存在于主干断裂附近巧家与东川间以及嵩明北西的2个凹凸体、存在于安宁河断裂冕宁附近和则木河断裂西昌附近的凹凸体以及位于鲜水河断裂中南段道孚—乾宁间大尺度的凹凸体将是川滇活动地块东边界未来大震或强震的震源区.  相似文献
3.
通过对含障碍体滑动方向相同平行断层失稳破坏的应变场、声发射数据的处理,分析了平行断层障碍体上应变场、声发射的时空演化图象,进而分析了障碍体的破裂过程以及障碍体破坏所引起的相互作用和相互影响,即增减震关系的分析.结果表明,这种滑动方向相同的平行断层的失稳破坏是一种减震机制.  相似文献
4.
Introduction Strong and large earthquakes are prepared and generated on specific segments of active fault zones, especially on the asperity parts of the zones (Aki, 1984; Wiemer, Wyss, 1997; Wyss, et al, 2000). Therefore, both the faulting-behavior identification and the rupture segmentation mainly based on the method of active tectonics are always important aspects in active fault research (DING, et al, 1993). The purposes of the two aspects of research focus on determining fault units tha…  相似文献
5.
川南马边地区强震危险性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
根据最近34a的区域台网地震资料,利用地震活动性参数b值的空间分布,结合历史强震与现今地震活动背景,分析了川南马边地区主要断裂带的现今活动习性,并初步判别出了潜在的强震危险区域。研究结果表明:1)马边地区的b值空间分布存在明显的空间差异,反映了该区域不同断裂带与断裂段应力积累水平的差异;2)马边-盐津断裂带上存在3个尺度不等的异常低b值区,它们可能是该断裂带上的相对高应力区(或凹凸体),其中位于马边北、沐川西部利店镇附近的凹凸体与位于该断裂带南端盐津附近的凹凸体可能是马边地区未来发生大地震的危险场所,而位于绥江南的小尺度凹凸体有可能是潜在强震的发生地点;3)存在于龙泉山断裂带西南段的凹凸体将是未来发生中强地震的场所;4)金口河-美姑断裂上位于汉源县皇木镇与峨眉山市龙池镇之间的凹凸体存在发生中强地震的可能性  相似文献
6.
It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period ofa forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.  相似文献
7.
本文对龙门山断裂带和鲜水河断裂带上1970年以来记录的小震数据进行了收集、整理和分析,采用基于Matlab平台的Zmap软件,去除了断裂带上的丛集数据和余震,划定了有效地震数据的时间和震级范围,通过最大似然法求取了断裂带所在区域的b值分布图。基于b值大小与应力高低成反比的原理,通过断裂带上低b值区识别凹凸体的位置。就龙门山断裂带,通过低b值区识别出的凹凸体的位置与汶川地震发生的起始破裂位置和极震区的位置基本保持一致;而鲜水河断裂带由于受到小震数据的限制,部分段缺失b值分布,但整条断裂带仍可清晰识别出凹凸体位置,且1725年以来的历史强震和1970年以来5级以上的历史地震基本上都位于此区域。断裂带的实例分析结果证明,利用小震数据通过最大似然法计算b值分布图,其相对低b值区与历年强震发生的位置存在较大的相关性,为验证利用低b值区识别凹凸体方法的可行性和实用性提供了有力的证据。  相似文献
8.
Slip-softening instability on a vertical strike-slip fault with asperities has been analysed. The fault strength is uniform in depth, but the strength is nonuniform in the strike direction, i.e., there are asperities on the fault. These asperities and other segments of the fault have the same type of constitutive law but different peak stresses. The material surrounding the fault is represented by elastic plates, of which the top and bottom surfaces are stress-free.We use a finite element method to study the evolution of theoretical displacement, stress and strain field with a growing displacement applied at the remote plate ends. The slip and frictional stress are obtained as part of the solution. We have compared the difference of theoretical displacement, strain field and the distribution of frictional stress on the fault between unstable and stable slip. In addition, we have studied the effect of size and strength of asperities on instability, and the softening behaviour of asperities before instability.We find that (1) the failure of the fault zone may be due to either dynamic instability or rapid quasistable slip. A general characteristic of unstable mode is that slippage, on some parts of asperities increases indefinitely for a small finite increase in remote imposed displacement until, immediately before the unstable slip; (2) the size and peak strength of asperities have a large effect on instability. Reducing the size and peak strength of asperities tends to replace inertially unstable deformation with stable deformation; (3) the location with maximum acceleration during unstable slip, as the plausible nucleating seismic source, is in asperities; (4) the shapes of the changes in theoretical stress and strain at a given location, caused by the nonlinear constitutive property of the fault, are all similar whether instability, happens or not. This fact suggests that the changes of peak type or bend type in crustal deformation are not required for earthquake instability.  相似文献
9.
A simplified multiple source model was constructed for the 1975 HawaiiM s=7.2 earthquake by matching synthetic signals with three component accelerograms at two stations located approximately 45 km from the epicenter. Six major subevents were identified and located approximately. The signals of these are larger by factors of 1.4 to 3.2 than that of theM L=5.9 foreshock which occurred 70 minutes before the main rupture and also triggered the SAM-1 recorders at the two stations. Dividing the rupture length (40 km) by the duration of strong ground shaking ( 50 sec) an, average rupture velocity of 0.8 km/sec (about 25% of S-velocity) is obtained. Thus it is likely that the rupture stopped between subevents. The approximate epicenters of the 6 major subevents, and of the foreshock, support the hypothesis that they were located in high stress asperities which rupture during the main shock, except for the last events which is interpreted as a stopping phase generated at a barrier. These asperities have been previously defined on the basis of differences in the precursor pattern before the mainshock. Thus, it appears that both the details of the precursors and of the main rupture depended critically on the heterogeneous tress distribution in the source volume. This suggests that main rupture initiation points and locations of high rupture accelerations may be identified before the mainshock occurs, based on precursor anomaly patterns. A satisfactory match of synthetic signals with the observations could be obtained only if the aximuth of the fault plane of subevents was rotated from N60°E to N90°E and back to N30°E. These orientations are approximately parallel to the nearest Kilauea rift segments. Hence the slip directions and greatest principal stresses were oriented perpendicular to the rifts everywhere. From this analysis and other work, it is concluded that this fault surface consisted of three types of segments with different strength: hard asperities (radius 5 km), soft but brittle segments between the asperities (radius 5 km), and a viscous half (10×40 km) which slipped during the mainshock, but where microearthquakes and aftershocks are not common.  相似文献
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号