首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3891篇
  免费   736篇
  国内免费   103篇
测绘学   73篇
大气科学   62篇
地球物理   3840篇
地质学   577篇
海洋学   37篇
天文学   19篇
综合类   46篇
自然地理   76篇
  2023年   22篇
  2022年   54篇
  2021年   67篇
  2020年   78篇
  2019年   75篇
  2018年   94篇
  2017年   102篇
  2016年   89篇
  2015年   128篇
  2014年   172篇
  2013年   158篇
  2012年   186篇
  2011年   203篇
  2010年   173篇
  2009年   228篇
  2008年   281篇
  2007年   197篇
  2006年   232篇
  2005年   196篇
  2004年   182篇
  2003年   136篇
  2002年   159篇
  2001年   142篇
  2000年   147篇
  1999年   154篇
  1998年   176篇
  1997年   133篇
  1996年   152篇
  1995年   158篇
  1994年   86篇
  1993年   88篇
  1992年   55篇
  1991年   43篇
  1990年   35篇
  1989年   27篇
  1988年   47篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   21篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   11篇
  1978年   6篇
  1977年   10篇
  1954年   6篇
排序方式: 共有4730条查询结果,搜索用时 15 毫秒
1.
大地震在哪里发生是地震预报首先要解决的问题.利用反演GNSS观测数据得到的2011年日本东北9级大地震前7年(2004—2010年)断层上的应力变化,我们发现了这次地震断层的孕震区.为了进一步研究该孕震区的演化过程,本文继续反演这次大地震在1997—2003年间的断层应力变化过程.通过这两期的反演工作,我们看到,在这14年中,断层应力的年变化图案的主要特征基本是稳定的,并存在明显的应力增加区和降低区.前者与地震的破裂区吻合,后者与前震、重复小地震和无震滑动的区域一致.显著的剪切应力增加区不但与主震,而且还与大余震的破裂区相符合.我们发现断层面上高应力积累区的零剪应力和零正应力变化的等值线不重合,前者在断层面上的深度大于后者,这意味着在剪应力增加区存在着正应力降低区或剪切强度降低区(由于剪切强度与正应力成正比).断层初始破裂点似乎更偏好零正应力等值线附近的位置,这是因为该处不但靠近剪切强度降低区,而且位于剪应力积累最显著的地方.研究结果表明,正应力变化对大地震的初始破裂有影响;本文所使用的断层应力变化反演方法,可以用来作为预测大地震发生位置的一种手段.  相似文献   
2.
Zhou  Kan  Liu  Baoyin  Fan  Jie 《地理学报(英文版)》2020,30(8):1363-1381
Journal of Geographical Sciences - The border areas of the Tibetan Plateau and the neighboring mountainous areas have a high incidence of earthquakes with a magnitude greater than Ms 5.0, as well...  相似文献   
3.
针对四川测震台网运行月报中关于测震分析章节编写过程中的程序化工作流程,依托于数据专家(Datist)自动化流程实现了数据源读取、数据清洗、目录统计、绘制震中分布图、计算速报结果自评和报告自动产出等功能,辅助完成月报生成。实践证明该成果可有效减轻地震监测人员的工作负担,提高工作效率。  相似文献   
4.
分布式光纤声波传感器(Distributed Acoustic Sensing,DAS)是近年来兴起的超密集地震观测系统,具有一系列观测密度高、观测成本低、耐受恶劣环境等优势,在油气行业得到了广泛应用,也引起了天然地震学界的关注.本文简要回顾了DAS系统的测量原理、发展历程、技术方案、介绍了测量原理及其响应特性,然后围绕多个观测实验,介绍浅部结构成像、深部结构探测和地震监测三个方向的典型应用实例,最后讨论了DAS系统在天然地震学研究中应用面临的挑战和发展趋势.  相似文献   
5.
地震预报意见以大量资料为基础,依靠专家经验和多学科知识并通过会商讨论形成。显著地震发生后,快速、准确、有效地研判震情可为后期应急指挥和地震现场工作奠定基础。本文以Datist软件为平台,基于四川及邻区的基础资料,设计研发符合四川震情的震后会商资料快速产出系统,当四川及邻区发生中强地震时,通过该系统可在收到地震短信5分钟内以请求触发的方式快速产出应急会商资料,并以微信、PowerPoint和Word的形式将基础资料发送给分析预报人员,为后期趋势分析奠定基础。  相似文献   
6.
翟笃林  祝芙英  林剑  杨剑 《中国地震》2020,36(4):857-871
基于中国陆态网络地基GPS-TEC观测,针对2008~2019年发生在中国区域的7个MS≥6.0地震,采用滑动四分位距法分析了地震前后的电离层扰动时空分布特征。结果显示,5个地震的震前2~6天,GPS-TEC值出现负异常扰动,地震发生期间及震后电离层TEC出现正异常扰动,主要集中在震后2~7天;GPS观测站距离震中越近,垂直上空的TEC扰动越明显,扰动空间最大范围可达2000km。随着震级的增加,震前电离层TEC异常扰动的发生率有所增加,且异常覆盖的范围也有所扩大。因此,认为震前一周内的电离层TEC变化可能提供揭示电离层扰动与地震活动之间关系的线索。  相似文献   
7.
工业革命以来,大气中温室气体不断增加,驱动了全球变暖。IPCC第五次评估报告(AR5)指出,人类排放的温室气体导致的地球系统能量增加中90%以上都被海洋吸收,使得海洋增暖,海洋热含量增加。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)发现:自1970年以来,几乎确定海洋上层2000 m在持续增暖。1993—2017年间的增暖速率至少为1969—1993年的2倍,体现出显著的变暖增强趋势。此外,在20世纪90年代以后,2000 m以下的深海也已观测到了变暖信号,尤其是在南大洋(30°S以南)。在1970—2017年间,南大洋上层2000 m储存了全球海洋约35%~43%的热量,在2005—2017年期间增加到45%~62%。基于耦合气候模型预估,几乎可确定海洋将在21世纪持续增暖,2018—2100年间海洋热含量上升幅度可能是1970—2017年间的5~7倍(RCP8.5情景)或2~4倍(RCP2.6情景)。变暖导致的热膨胀效应贡献了1993年以来全球海平面上升的约43%。  相似文献   
8.
为实现地磁台站场地勘选指标的快速计算和勘选报告的在线保存与查询,提高地磁台站勘选数据处理效率,降低人工处理数据错误率,在现有地磁数据处理软件功能的基础上设计开发地磁台站勘选数据处理系统,以提高勘选的工作效率。  相似文献   
9.
建设韧性城乡的技术途径   总被引:1,自引:1,他引:0  
中国地震多发、灾害严重,迫切需要提升抗震能力,实现韧性城乡的建设。本文围绕建设韧性城乡的技术途径,梳理了工程抗震技术发展的历史沿革,阐述了韧性城乡的提出背景。基于震害类比、实验验证和理论分析,总结提炼工程结构抗震能力“散”、“脆、”偏、“单”评估法,指出应以“整而不散”、“延而不脆”、“匀而不偏”、“冗而不单”的传统抗震技术及隔震与消能减震新技术作为实现韧性城乡的技术途径。  相似文献   
10.
强震震前(preseismic)动力学过程的研究对于地震预测具有十分重要的意义,但由于观测资料的限制,目前对强震前孕震区力学状态及其演化过程的认识还非常有限.2011年日本东北9.0特大地震(Tohoku-Oki)发生在GPS观测台站最为密集的地区,为研究特大地震震间(interseismic)与震前的变形状态提供了难得的机会.文中将利用日本东北大地震之前连续的GPS观测资料,分别计算震间与震前的速度场与变形场.通过对比分析发现,日本东北地区(Tohoku)震前的应变状态与震间的有很大的不同,震间的变形主要受到太平洋板块向日本海沟北西西向的俯冲挤压作用所控制,其主压应变以近东西向压缩为主,日本东北地区的运动方向与太平洋板块的运动方向大体一致.但是,临近地震前(震前)日本东北地区的运动方向发生了很大变化,震前30天的连续GPS观测结果显示,速度场的优势方向经常变换,间歇性地出现与太平洋板块运动方向相反的情况.这意味着震前孕震区的力学状态发生了很大的改变.这种变化可能与震前破裂成核或慢滑移及慢地震等过程有关,这些过程将加速或促进大地震的发生,从而为大地震的发生准备了力学条件.值得特别强调的是,这些现象都是可以通过直接观测能够发现的大地震之前的异常现象.由此可见,加密GPS站点进行连续观测,寻找震前变形异常区以及探索异常的物理机制对于地震预测预报有重要的科学意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号