首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   55篇
  国内免费   81篇
测绘学   3篇
大气科学   1篇
地球物理   29篇
地质学   349篇
海洋学   33篇
天文学   2篇
综合类   10篇
自然地理   6篇
  2023年   5篇
  2022年   9篇
  2021年   11篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   18篇
  2016年   12篇
  2015年   12篇
  2014年   21篇
  2013年   19篇
  2012年   30篇
  2011年   19篇
  2010年   20篇
  2009年   25篇
  2008年   28篇
  2007年   13篇
  2006年   24篇
  2005年   20篇
  2004年   9篇
  2003年   11篇
  2002年   18篇
  2001年   14篇
  2000年   11篇
  1999年   12篇
  1998年   10篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1987年   3篇
  1986年   1篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
1.
The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe–Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy(SEM), and energy dispersive spectrometer(EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe–Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe–Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe–Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75–0.73 Ma B.P..  相似文献   
2.
正1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce molar ratio on the composition,crystal structure,and thermal stability of hydrotalcite are examined.Energy-dispersive X-ray spectroscopy(EDS),X-  相似文献   
3.
Cooling rates based on the retrograde diffusion of Fe2+ and Mg between garnet and biotite inclusions commonly show two contrasting scenarios: a) narrow closure temperature range with apparent absence of retrograde diffusion; or b) high result dispersion due to compositional variations in garnet and biotite. Cooling rates from migmatites, felsic and mafic granulites from Ribeira Fold Belt (SE Brazil) also show these two scenarios. Although the former can be explained by very fast cooling, the latter is often the result of open-system behaviour caused by deformation. Retrogressive cooling during the exhumation of granulite-facies rocks is often processed by thrusting and shearing which may cause plastic deformation, fractures and cracks in the garnet megablasts, allowing chemical diffusion outside the garnet megablast – biotite inclusion system.However, a careful use of garnets and biotites with large Fe/Mg variation and software that reduces result dispersion provides a good correlation between closure temperatures and the size of biotite inclusions which are mostly due to diffusion and compositional readjustment to thermal evolution during retrogression.Results show that felsic and mafic granulites have low cooling rates (1–2 °C/Ma) at higher temperatures and high cooling rates (∼100 °C/Ma) at lower temperatures, suggesting a two-step cooling/exhumation process, whereas migmatites show a small decrease in cooling rates during cooling (from 2.0 to 0.5 °C/Ma). These results agree with previously obtained thermochronological data, which indicates that this method is a valid tool to obtain meaningful petrological cooling rates in complex high-grade orogenic belts, such as the Ribeira Fold Belt.  相似文献   
4.
潘波  程滔  徐丹  刘松军 《岩石学报》2020,36(7):2067-2080
长白山天池火口北侧天文峰之上,一套醒目的黄色浮岩引起广泛的关注,其颜色成因问题更是讨论的热点。本文通过野外地质调查、显微形貌和地球化学分析等方法,探索了黄色浮岩的颜色成因问题,并对此次喷发活动(天文峰期喷发)有了更进一步的认识。黄色浮岩与其下部灰白色浮岩应为同一期喷发所形成,两者成分一致且特征相似。黄色浮岩初始颜色为灰白色,后期受所处环境(降水丰富)与本身气孔特征的影响,浮岩内发生了元素析出和元素沉淀的过程。首先,浮岩内Si与H2O结合形成弱硅酸(H2Si O3),而大气中CO2与H2O结合形成弱碳酸(H2CO3),在弱酸环境下火山玻璃逐渐析出Si、K、Al、Ca和Fe等阳离子,而析出的元素易溶于水的部分被流水带走,难溶于水的Fe与Al富集并粘附在火山玻璃壁上,同时由于Fe可与H2O络合形成黄色的Fe的水合物(Fe2O3·n H2O),而Al与H2O络合形成凝胶状白色水合物(Al2O3·n H2O),两者混合形成了黄色胶状物粘附在火山玻璃壁上,改变了浮岩原本的灰白色,形成了黄色浮岩。因此,天文峰期浮岩的黄色是由于后期风化淋滤作用所造成,属于次生色。本研究提高了对火山喷发堆积物风化淋滤作用过程的认识,也为其他地区相似颜色变化问题的讨论提供了借鉴。  相似文献   
5.
鞍山齐大山铁矿王家堡子采区产出鞍山式沉积变质型铁矿,铁矿石多以磁铁贫矿为主,局部产出富铁矿,目前钻探工程控制标高为-600 m,采区深部的资源潜力是急待解决的问题,为此对采区进行音频大地电磁测量和研究工作。齐大山铁矿的电性变化复杂,通过先期的实验剖面确定了矿区铁矿体的3种不同电阻率特征,然后对王家堡子采区的3760线、4050线、4500线进行音频大地电磁测量、数据处理和断面反演分析。推测3760线的低阻由磁铁贫矿引起,局部高阻为假象赤铁贫矿引起;推测4050线和4500线浅部的低阻由磁铁贫矿引起,深部的高阻为假象赤铁贫矿及磁铁贫矿引起。同时预测3760线、4050线和4500线西侧深部均有低电阻率显示,反映出隐伏铁矿床的存在特征,推测在-1 000 m标高以下仍存在有隐伏的富矿体或板状磁铁贫矿。经过钻探验证,获得了预期的找矿效果。  相似文献   
6.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   
7.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   
8.
The study area is located near the town of Filippoi, north of the city of Kavala in northern Greece, known from ancient times for its rich gold mines, situated inside hydrothermal alteration zones (Fe–Mn oxide minerals). A Very High-Resolution (0.5 m pixel size) image of Worldview-2 satellite was digitally enhanced, yielding target areas of potential ore existence and lineaments. Ground-truth that followed digital image processing, revealed abandoned ancient mines, slags and ore occurrences. Also, a number of lineaments delineated on the satellite image were verified as faults.  相似文献   
9.
Magnetite is a common mineral in many ore deposits and their host rocks, and contains a wide range of trace elements (e.g., Ti, V, Mg, Cr, Mn, Ca, Al, Ni, Ga, Sn) that can be used for deposit type fingerprinting. In this study, we present new magnetite geochemical data for the Longqiao Fe deposit (Luzong ore district) and Tieshan Fe–(Cu) deposit (Edong ore district), which are important magmatic-hydrothermal deposits in eastern China.Textural features, mineral assemblages and paragenesis of the Longqiao and Tieshan ore samples have suggested the presence of two main mineralization periods (sedimentary and hydrothermal) at Longqiao, among which the hydrothermal period comprises four stages (skarn, magnetite, sulfide and carbonate); whilst the Tieshan Fe–(Cu) deposit comprises four mineralization stages (skarn, magnetite, quartz-sulfide and carbonate).Magnetite from the Longqiao and Tieshan deposits has different geochemistry, and can be clearly discriminated by the Sn vs. Ga, Ni vs. Cr, Ga vs. Al, Ni vs. Al, V vs. Ti, and Al vs. Mg diagrams. Such difference may be applied to distinguish other typical skarn (Tieshan) and multi-origin hydrothermal (Longqiao) deposits in the MLYRB. The fluid–rock interactions, influence of the co-crystallizing minerals and other physicochemical parameters, such as temperature and fO2, may have altogether controlled the magnetite trace element contents of both deposits. The Tieshan deposit may have had higher degree of fO2, but lower fluid–rock interactions and ore-forming temperature than the Longqiao deposit. The TiO2–Al2O3–(MgO + MnO) and (Ca + Al + Mn) vs. (Ti + V) magnetite discrimination diagrams show that the Longqiao Fe deposit has both sedimentary and hydrothermal features, whereas the Tieshan Fe–(Cu) deposit is skarn-type and was likely formed via hydrothermal metasomatism, consistent with the ore characteristics observed.  相似文献   
10.
老挝作为"特提斯成矿域"的重要组成部分,具有丰富的矿产资源,尤其是铜、金、铁、铝、钾盐等优势矿产与中国具有很强的互补性。初步论述了老挝的成矿地质背景和近年来发现的与花岗岩类有关的斑岩型铜-金矿床、矽卡岩型铁矿床的矿化地质特征、矿石矿物特征、矿化与岩体的空间关系,在此基础上初步建立了其成矿模式。基于同位素定年数据和Hf-Rb-Ta元素判别图,推测这些花岗岩及与其相关的矿床形成于晚石炭世华南地块向印支地块俯冲产生的火山岛弧环境。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号