首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   10篇
地质学   7篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
开源地理信息共享平台GeoNetwork基于通用的元数据存储和交换标准,具有面向服务的灵活架构,成为机构、行业整合分散地理信息的有效平台。本文介绍GeoNetwork,涉及架构、关键技术、核心功能定制等;基于GeoNetwork构建了兴都库什——喜马拉雅地区(HKH地区)地理信息共享网络中国节点,实践表明,GeoNetwork满足区域及行业地理信息共享平台的功能需求,定制开发的平台为区域合作研究和生态保护提供了支持。  相似文献   
2.
Hindukush is an active subduction zone where at least one earthquake occurs on daily basis. For seismic hazard studies, it is important to develop a local magnitude scale using the data of local seismic network. We have computed local magnitude scale for Hindukush earthquakes using data from local network belonging to Center for Earthquake Studies (CES) for a period of three years, i.e. 2015–2017. A total of 26,365 seismic records pertaining to 2,683 earthquakes with magnitude 2.0 and greater, was used with hypocentral distance less than 600 km. Magnitude scale developed by using this data comes to be ML = logA + 0.929logr + 0.00298r – 1.84. The magnitude determined through formulated relation was compared with that of standard relation for Southern California and relation developed by the same authors for local network for Northern Punjab. It was observed that Hindukush region has high attenuation as compared to that of Southern California and Northern Punjab which implies that Hindukush is tectonically more disturbed as compared to the said regions, hence, seismically more active as well. We have calculated station correction factors for our network. Station correction factors do not show any pattern which probably owes to the geological and tectonic complexity of this structure. Standard deviation and variance of magnitude residuals for CES network determined using Hutton and Boore scale and scale developed in this study were compared, it showed that a variance reduction of 44.1% was achieved. Average of magnitude residuals for different distance ranges was almost zero which showed that our magnitude scale was stable for all distances up to 600 km. Newly developed magnitude scale will help in homogenization of earthquake catalog. It has been observed that b-value of CES catalog decreases when magnitude is calculated by using newly developed magnitude scale.  相似文献   
3.
The accurate measurement of precipitation is crucial for hydrological studies. This is especially true for the Hindu Kush–Karakoram–Himalaya (HKKH) mountain region, which is characterized by high spatiotemporal precipitation variability. The paucity of raingauges makes it difficult to measure precipitation in this region precisely. We conducted evaluation of TMPA 3B42V7 and APHRO 1101 in the HKKH area on a daily basis at a spatial resolution of 0.25°?×?0.25°, using 27 raingauges. Statistically, the largest error in the gridded data arose mainly from elevation, followed by volumetric error and Nash–Sutcliffe efficiency. Overall, the TMPA data have a poor correlation with ground observations in the HKKH area, especially for higher altitudes. The western areas are relatively more underestimated and the Karakoram shows higher frequency of bias in the TMPA retrievals. This method could help improve the satellite precipitation estimation algorithm as it considers local physiography and climatic factors.  相似文献   
4.
Abstract

A simple guide (shown in the appendix) is produced, which enables a water manager or engineer to make an estimate of statistics of water equivalent of snow cover for return periods between 5 and 100 years for most places in the United Kingdom. This paper describes how the guide was produced using many different sources of data. The methods described here will be of help to both meteorologists and hydrologists in temperate countries with similar snow questions.  相似文献   
5.
The Karakoram–Hindu Kush–Pamir and adjacent Tibetan plateau belt comprise a series of Gondwana‐derived crustal fragments that successively accreted to the Eurasian margin in the Mesozoic as the result of the progressive Tethys ocean closure. These domains provide unique insights into the thermal and structural history of the Mesozoic to Cenozoic Eurasian plate margin, which are critical to inform the initial boundary conditions (e.g. crustal thickness, structure and thermo‐mechanical properties) for the subsequent development of the large and hot Tibetan–Himalaya orogen, and the associated crustal deformation processes. Using a combination of microstructural analyses, thermobarometry modelling and U–Th–Pb monazite and Lu–Hf garnet geochronology, the study reappraises the metamorphic history of exposed mid‐crustal metapelites in the Chitral region of the South Pamir–Hindu Kush (NW Pakistan). This study also demonstrates that trace elements in monazite (especially Y and Dy), combined with thermodynamical modelling and Lu–Hf garnet dating, provides a powerful integrated toolbox for constraining long‐lived and polyphased tectono‐metamorphic histories in all their spatial and temporal complexity. Rocks from the Chitral region were progressively deformed and metamorphosed at sub‐ and supra‐solidus conditions through at least four distinct episodes from the Mesozoic to the Cenozoic. Rocks were first metamorphosed at ~400–500°C and ~0.3 GPa in the Late Triassic–Early Jurassic (210–185 Ma), likely in response to the accretion of the Karakoram during the Cimmerian orogeny. Pressure and temperature subsequently increased by ~0.3 GPa and 100°C in the Early‐ to Mid Cretaceous (140–80 Ma), coinciding with the intrusion of calcalkaline granitic plutons across the Karakoram and Pamir regions. This event is interpreted as the record of crustal thickening and the development of a proto‐plateau within the Eurasian margin due to a long‐lived episode of slab flattening in an Andean‐type margin. Peak metamorphism was reached in the Late Eocene–Early Oligocene (40–30 Ma) at conditions of 580–600°C and ~0.6 GPa and 700–750°C and 0.7–0.8 GPa for the investigated staurolite schists and sillimanite migmatites respectively. This crustal heating up to moderate anatexis likely resulted in the underthrusting of the Indian plate after a NeoTethyan slab‐break off or to the Tethyan Himalaya–Lhasa microcontinent collision and subsequent oceanic slab flattening. Near‐isothermal decompression/exhumation followed in the Late Oligocene (28–23 Ma) as marked by a pressure decrease in excess of ~0.1 GPa. This event was coeval with the intrusion of the 24 Ma Garam Chasma leucogranite. This rapid exhumation is interpreted to be related to the reactivation of the South Pamir–Karakoram suture zone during the ongoing collision with India. The findings of this study confirm that significant crustal shortening and thickening of the south Eurasian margin occurred during the Mesozoic in an accretionary‐type tectonic setting through successive episodes of terrane accretions and probably slab flattening, transiently increasing the coupling at the plate interface. Moreover, they indicate that the south Eurasian margin was already hot and thickened prior to Cenozoic collision with India, which has important implications for orogen‐scale strain‐accommodation mechanisms.  相似文献   
6.
Basement rocks from the Western Hindu Kush preserve evidence of multiple metamorphic and magmatic events that occurred along the boundary between the Archean–Proterozoic Afghan Central and Afghan–Tajik Blocks. To verify the different metamorphic stages or events, mineral textures and phase equilibria in metamorphic basement rocks and their age relations to magmatic episodes have been investigated. Quartzofeldspathic gneiss and migmatite with lenses of amphibolite (with assumed Proterozoic age for their metamorphism) are intruded by the Triassic Hindu Kush granitoid batholith and small Cretaceous and Oligocene granite intrusions. The age of thermal overprint (210–170 Ma) by the Triassic batholith is confirmed by new monazite data. Both Triassic and Cretaceous granitoids and surrounding basement rocks underwent subsequent metamorphism up to epidote–amphibolite facies. The degree of this metamorphism increases southward at the contact to the Kabul Block, which under-plates the Western Hindu Kush from the south. An early Miocene age was obtained by Pb–Th analyses in thorite and huttonite, which are close or slightly younger than the Oligocene granite in this area. The Cretaceous meta-granodiorite near the border with the Kabul Block contains xenoliths of granulite facies rocks that could come from the Neoarchean granulite facies basement of the Kabul Block. The multi-stage metamorphic and magmatic evolution classifies the Hindu Kush mountain belt as a long-lived suture zone that was active since the early Palaeozoic. The results of this study support the interpretation about possible relations of the Afghan Central Blocks to the southern margin of Eurasia during the evolution of Para- and Neotethys.  相似文献   
7.
Developing countries face a difficult challenge in meeting the growing demands for food, water, and energy, which is further compounded by climate change. Effective adaptation to change requires the efficient use of land, water, energy, and other vital resources, and coordinated efforts to minimize trade-offs and maximize synergies. However, as in many developing countries, the policy process in South Asia generally follows a sectoral approach that does not take into account the interconnections and interdependence among the three sectors. Although the concept of a water–energy–food nexus is gaining currency, and adaptation to climate change has become an urgent need, little effort has been made so far to understand the linkages between the nexus perspective and adaptation to climate change. Using the Hindu Kush Himalayan region as an example, this article seeks to increase understanding of the interlinkages in the water, energy, and food nexus, explains why it is important to consider this nexus in the context of adaptation responses, and argues that focusing on trade-offs and synergies using a nexus approach could facilitate greater climate change adaptation and help ensure food, water, and energy security by enhancing resource use efficiency and encouraging greater policy coherence. It concludes that a nexus-based adaption approach – which integrates a nexus perspective into climate change adaptation plans and an adaptation perspective into development plans – is crucial for effective adaptation. The article provides a conceptual framework for considering the nexus approach in relation to climate change adaptation, discusses the potential synergies, trade-offs, and offers a broader framework for making adaptation responses more effective.

Policy relevance

This article draws attention to the importance of the interlinkages in the water, energy, and food nexus, and the implications for sustainable development and adaptation. The potential synergies and complementarities among the sectors should be used to guide formulation of effective adaptation options. The issues highlight the need for a shift in policy approaches from a sectoral focus, which can result in competing and counterproductive actions, to an integrated approach with policy coherence among the sectors that uses knowledge of the interlinkages to maximize gain, optimize trade-offs, and avoid negative impacts.  相似文献   

8.
本研究利用新疆区域数字地震台网的波形资料,采用CAP方法反演了2016年11月25日阿克陶6.7级地震的前震、主震及11次MS ≥ 3.6余震序列的最佳双力偶震源机制解,得到阿克陶6.7级地震最佳双力偶机制解:节面Ⅰ走向20°/倾角69°/滑动角-10°;节面Ⅱ走向114°/倾角81°/滑动角-159°,表明此次阿克陶6.7级地震为一次走滑型地震事件,结合震源区的地震地质构造及余震序列空间分布等已有研究成果,判定节面Ⅱ代表了主震的发震断层面。主震最大主压力轴方位为339°,与震源区附近历史中强震P轴近NW向的优势方位基本一致。其4.8级前震的震源机制解为走滑型,与主震震源机制解具有较高的一致性。11次余震中有6次为走滑型地震,3次为逆断型地震,1次正断型地震,1次混合型地震,且多数地震具有近NW向的P轴方位。此次6.7级地震序列的震源深度分布于6~16km之间,而大部分地震为9~13km,与本文计算得到的主震的震源深度10km相差不大。此外,初步分析了兴都库什-帕米尔地区强震活动与此次阿克陶6.7级地震的关系。  相似文献   
9.
首先通过对区域地质构造背景、地震活动性质以及动力环境的分析,认为天山地震带强震活动主要受兴都库什-帕米尔构造结的动力控制。其次分析了兴都库什-帕米尔地区与天山地震带强震活动之间的相关关系,结果表明两地区强震成组活动存在一定的同步特征;进一步考察兴都库什-帕米尔地区中源地震与天山地震带强震活动之间关系,发现两者同样存在同步特征,且该区中源地震的活动强度和频度越大,天山地震带的强震活动越剧烈,其分布范围也越广。该结果从地震活动的角度反映了兴都库什-帕米尔地区对天山地震带强震活动的动力控制作用。  相似文献   
10.
Emma Mawdsley 《Geoforum》2006,37(3):380-390
One of the defining changes India has experienced over the last decade has been the social and political consolidation of the Hindu Right. Critics point to its chauvinist ideologies, the discrimination and violence against religious minorities, and the neglect of the poor. This paper examines the parallels between the discourses of the Hindu Right and those of neo-traditionalist environmentalists. Similarities include gendered and social conservatism; superficial hermeneutic analyses of ancient texts; partial and ‘romantic’ histories; and the essentialisation of science and of East and West. The paper concludes by suggesting that environmental scholars and activists cannot afford to be innocent of the implications of their ideas and assumptions given the social and political contexts of Hindu nationalism in contemporary India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号