排序方式: 共有73条查询结果,搜索用时 35 毫秒
1.
淡水湖库富营养化与蓝藻水华是全球性的突出水环境问题,尤其是滨岸带严重蓝藻水华堆积甚至造成了水体黑臭、威胁饮用水安全等严重危害,科学评估滨岸带蓝藻水华堆积风险、精准识别蓝藻水华易堆积区域是水环境管理与研究中亟待解决的关键科学问题.本研究以我国长江中下游的大型浅水富营养化湖泊巢湖为研究对象,依托流域水文与湖泊水动力模拟、遥感反演、GIS空间分析等技术,综合考虑藻类生物量、岸线形态、湖泊水动力、风速和风向等要素,创新构建了蓝藻水华堆积风险评估指标体系,量化评估了2018-2019年的巢湖滨岸带的蓝藻水华堆积风险,并将滨岸带蓝藻水华堆积风险等级划分为5级(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ),绘制了蓝藻水华滨岸带堆积风险的空间分布,识别了蓝藻水华的易堆积区域.评估结果表明:巢湖滨岸带蓝藻水华堆积的高风险区域呈连续片状分布于西巢湖西岸与西北岸,占巢湖沿岸区域的12.1%,是巢湖蓝藻水华应急处置管理的关键区域,评估结果与调研结论总体一致.研发的蓝藻水华堆积风险评估方法可应用于其他大型富营养化湖库,为蓝藻水华应急处置管理提供关键技术支撑. 相似文献
2.
藻蓝素(PC)是水体蓝藻的指示性色素,其浓度反映了蓝藻生物量,利用卫星遥感监测藻蓝素浓度年内动态对蓝藻水华的有效防控有着重要意义.根据不同季节的巢湖藻蓝素浓度实测数据与同期Sentinel-3 OLCI影像,构建机器学习回归反演模型,应用于巢湖2019年OLCI影像集上,对巢湖藻蓝素浓度的空间分布、年内变化进行遥感监测.研究表明:在MUMM和C2RCC水体大气校正方法中,C2RCC的大气校正结果更接近实测光谱反射率;在机器学习回归算法中,基于梯度提升回归的藻蓝素浓度反演模型精度最高,其R2、RMSE和rRMSE分别达到0.84、49.76 μg/L和34.1%.水体藻蓝素浓度在1-4月及12月较低,在5-11月浓度较高且波动频繁,日均气温是水体藻蓝素浓度年内变化的主要原因,而藻蓝素短期剧烈波动主要是受到日降水量和日照时数的影响;在夏、秋季节,西湖区藻蓝素浓度明显高于中、东湖区,主要与入湖河流中氮磷等物质的高输入有关.Sentinel-3 OLCI影像为湖库水体藻蓝素浓度动态监测提供了重要数据源,梯度提升回归算法在富营养化水体藻蓝素浓度反演中具有较大的应用潜力. 相似文献
3.
在巢湖西北半湖近岸带设置大型围隔研究秋季连续打捞蓝藻对湖泊温室气体通量的影响,应用YL-1000型大型仿生式水面蓝藻清除设备进行原位打捞蓝藻,通过便携式温室气体分析仪-静态箱法对大型围隔内水-气界面CH4、CO2通量特征及其影响因素进行观测.结果表明:对比未打捞区,蓝藻连续打捞下打捞区水体中叶绿素a(Chl.a)、悬浮物(SS)浓度不断下降,两者削减率分别为72%、85%,Chl.a、SS浓度分别下降到29.6±2.5 μg/L、12.5±1.2 mg/L,打捞对围隔内颗粒态物质去除效果十分明显;打捞过程中水体溶解性有机物(DOM)中微生物代谢类腐殖质(C1)、类蛋白(C3)显著下降趋势,打捞区C1、C3组分(0.18±0.02、0.06±0.01 RU)强度明显低于未打捞区(0.26±0.05、0.12±0.03 RU),打捞能有效控制藻源性溶解性有机质释放.同时,打捞区水-气界面CH4通量呈显著下降趋势,未打捞区CH4通量平均值(17.473±1.514 nmol/(m2·s))为打捞区(7.004±4.163 nmol/(m2·s))近2倍,CH4通量与Chl.a、C1、C3组分均呈显著正相关,水体中藻源性溶解态有机质对CH4通量具有促进作用;打捞区CO2释放通量呈显著上升趋势,打捞区CO2吸收通量(-0.200±0.069 μmol/(m2·s))明显低于未打捞区(-0.344±0.017 μmol/(m2·s)),CO2通量与Chl.a、温度均呈显著负相关.秋季打捞对CH4、CO2综合日平均通量减排量值为0.275±0.076 mol/(m2·d)(以CO2当量计).研究结果揭示了巢湖秋季连续打捞蓝藻过程对水-气界面温室气体具有显著减排作用,且能在一定程度上减缓蓝藻水华与湖泊富营养化、气候变暖之间的恶性循环,为湖泊碳循环和蓝藻水华灾害防控提供科学数据支撑和理论参考. 相似文献
4.
在巢湖杭埠河流域中的古湖盆中心——三河圩区获取28.6 m长的湖相岩芯(SZK1507孔),利用AMS14C测年技术建立可靠的地层年代序列,通过对SZK1507孔738 cm以上段湖相沉积物平均粒径、磁化率、总氮(TN)、总有机碳(TOC)及C/N的综合分析,高分辨率重建了巢湖杭埠河流域全新世以来的古环境演变过程.结果表明,本区域的环境变化过程可以分为4个阶段,阶段Ⅰ(约10050—9700 cal.a B.P.)与阶段Ⅲ(约9250—5300 cal.a B.P.)气候较为湿润,巢湖水位较高,平均粒径、磁化率值较低,TN、TOC、C/N也偏低;阶段Ⅱ(约9700—9250 cal.a B.P.)与阶段Ⅳ(约5300 cal.a B.P.以来)气候干燥,巢湖水量减少,水位降低,平均粒径、磁化率值、TN、TOC、C/N均较高.一些全球范围内显著发生的气候突变事件在SZK1507孔沉积记录中也有体现,如9.3、8.2和4.2 ka B.P.事件等.将巢湖杭埠河流域10000 cal.a B.P.以来的平均粒径、磁化率、TN、TOC、C/N沉积记录与全新世以来的北纬30°夏季太阳辐射量、太阳黑子数、火山喷发对大气中硫酸盐含量贡献率等进行对比,发现巢湖杭埠河流域全新世气候突变事件主要受控于北半球夏季太阳辐射量变化、太阳活动以及火山活动等因素,并与它们之间复杂的响应机制有关. 相似文献
5.
有害蓝藻释放微囊藻毒素(MCs),严重威胁饮用水源地用水安全.为了解巢湖MCs污染状况及其异构体组成对水质的影响,于2012年夏季(8月)和秋季(11月),2013年冬季(2月)和春季(5月)进行采样分析,研究了巢湖水体中胞内微囊藻毒素(IMCs)和胞外微囊藻毒素(EMCs)异构体的时空分布及其与环境因子的关系.结果发现,IMCs和EMCs的平均浓度变化范围分别为0.12~6.45 μg/L和0.69~1.92 μg/L.在3种常见的异构体中,MC-RR和MC-LR比例较高,MC-YR最低,MC-RR和MC-LR是巢湖水体中MCs的主要异构体类型.IMCs和EMCs的异构体浓度及其比例呈现不同的时空分布特征.微囊藻生物量、水温、总磷浓度是影响IMCs和EMCs异构体浓度及其组成变化的关键环境因子.本研究表明巢湖富营养化严重的西湖区夏季能合成更多的MC-RR异构体,而秋、冬季节偏向于释放生理毒性更强的MC-LR异构体.了解MCs异构体组成变化及其关键影响因素,有助于预测预警水体MCs污染状况和评估饮用水源地MCs风险. 相似文献
6.
水生植被对于维持水生态系统结构和功能稳定性具有举足轻重的作用,而重建水生植物被认为是污染湖泊生态修复的重要手段.氮素是水生态系统重要的限制性元素之一,根着挺水植物生长发育无疑将深刻地影响着沉积物氮的迁移转化过程,但水生植物不同生长阶段对沉积物氮的需求和植物代谢强度均不同,目前对挺水植物完整生长过程中沉积物氮组分及含量变化认识仍十分不足.本研究通过为期120d的沉积物柱芯培养和水槽模拟试验,探究巢湖芦苇恢复完整生长过程中沉积物总氮(TN)、无机氮(TIN)与可转化态氮(TF-N)的变化及其关键调控因子.结果表明,芦苇完整生长过程将持续激发沉积物氮活性,沉积物TIN与TF-N含量逐渐增加,而沉积物TN和非可转化态氮(NTF-N)含量显著降低.模拟试验期间,指数型增长的芦苇生物量提高了沉积物铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,但亚硝态氮(NO_2~--N)含量却逐渐降低;与第0天相比,第120天沉积物离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)和有机态及硫化物结合态氮(OSF-N)含量分别增加了 1.10、3.40、3.60和1.40倍,这主要受芦苇吸收利用、根系代谢强化根际沉积物氧化还原电势和改变pH微环境共同驱动.在第120天,沉积物NH_4~+-N和NO_3~--N含量急剧升高,分别是第90天的9.43和2.22倍,表明芦苇衰亡凋落过程将向沉积物释放大量的TIN,故需要综合采取湖泊物理—生态工程手段来有效管控芦苇枯落物,从而提升水生植被修复效果并构建长效稳态机制. 相似文献
7.
巢湖自1990s中期至2012年间水质明显改善,但是近年来水质改善效果变缓,2018年蓝藻水华面积显著增加,为有效评估巢湖水体环境的变化,通过对20122018年巢湖17个点位的逐月调查数据分析阐述了近年来巢湖水质和藻情的变化特征,并在流域空间尺度上分析了巢湖流域水污染治理的进展和不足,为后续治理方向的调整和确定提供支撑.20122018年湖区调查数据显示:巢湖湖体总磷和总氮浓度显著升高,铵态氮浓度显著下降,水华蓝藻总量显著升高.在空间上,各污染指标水平呈现由西向东呈逐渐降低的趋势,但是各指标在不同湖区随时间的变化趋势差异明显,西部湖区的总磷、总氮和水华蓝藻指标近年来略有下降或持平,中部和东部湖区则显著升高,所以巢湖湖体总氮和总磷浓度的升高主要源于中、东部湖区的升高,这也是这两个湖区水华蓝藻变动的主要驱动因素.主要入湖河口数据显示:西部4条主要入湖污染河流(南淝河、十五里河、塘西河和派河)水质明显改善,但仍处于较高污染水平,中东部入湖河流(兆河、双桥河和柘皋河)总磷浓度明显升高,是中东部湖区水体营养盐升高的主要原因.中东部河流入湖污染的增加加剧了该区域湖体的富营养化水平,尤其是总磷浓度明显提升,导致中东部湖区夏季水华蓝藻的优势种从鱼腥藻种类演替为微囊藻种类.夏季微囊藻的大量繁殖,使得2018年巢湖中东部湖区部分月份水华面积异常增高.因此,巢湖流域的治理应该在持续强化流域西部合肥市污染治理的同时,增加对流域中部和东部治理的关注和投入. 相似文献
8.
9.
10.
富营养化湖泊的藻类残体大量沉降到湖底,其中易降解成分的降解和转化快速消耗底层水体中的溶解氧,极易造成水土界面缺氧,影响湖泊生态系统的健康.于2014年对巢湖12个样点的表层沉积物进行周年跟踪研究,分析样品中有机质来源、总有机碳(TOC)、蛋白质、总糖、总脂以及生物聚合物碳(BPC)等成分含量,揭示易降解有机质的成分特征及在巢湖的分布规律.研究表明:巢湖表层沉积物TOC含量较高,全湖样点平均含量达到1.24%.BPC含量占TOC含量的30.99%~60.48%,有机质中易降解成分含量较高,并且在冬季和夏季时在巢湖西北部湖区有明显累积;有机质及其中的生物易降解部分均主要集中在粒径4~8μm的表层沉积物上,在应用工程技术手段处理、降解表层沉积物中的过量有机质时,更应该关注粒径为4~8μm的沉积物颗粒. 相似文献