排序方式: 共有42条查询结果,搜索用时 41 毫秒
1.
大泊口位于滇池草海南部,水域面积0.52 km2,平均水深约2 m,作为滇池草海重富营养化水域生态修复示范区,大泊口分别于2015和2019年开展了两期生态修复工程,经过近年来的系统治理,大泊口水生态治理效果初步显现。为分析探究成功修复湖区水质改善、生态系统企稳向好的原因,本研究选择2015年2月-2021年12月共7年的连续监测数据,根据工程开展情况以及水生态状况将大泊口水域划分为4个部分(A1~A4水域),首先分析4个区域内主要的水质指标(悬浮物(SS)、化学需氧量(CODCr)、总磷(TP)、总氮(TN)和叶绿素a(Chl.a))的变化趋势和相关性,其次探究不同类型生态工程的修复效果,最后与草海和外海水域进行对比,分析大泊口的治理效果。结果表明,治理后大泊口A1~A4水域的CODCr、TP和Chl.a稳定下降,CODCr分别降低18.65、27.96、25.26、40.92 mg/L,TP分别降低0.11、0.10、0.11、0.14 mg/L,Chl.a分别降低0.037、0.068、0.067、0.106 mg/L,SS具有较强的季节性波动,TN仅有东南部A4水域表现出持续下降的趋势,平均下降0.68 mg/L。通过相关性分析得出,CODCr、TP与Chl.a的相关性最强,CODCr和TP可能是影响大泊口藻类生长的关键环境因子;大泊口开展的引水换水工程和微滤净化(除藻)工程,降低了营养盐浓度、加速了水体交换,进而降低了藻类生物量以及发生藻源性污染的风险,再通过沉水植物修复工程进一步净化水质,为形成稳定的草型湖泊提供条件,并且认为沉水植物修复工程是上述工程中最为直接、经济和长效的手段措施;最后将大泊口典型水域的水质和草海、外海水质进行比较,可以认为在相同的地理及气候条件下,大泊口东南水域的生态修复取得了一定的成功。大泊口部分湖区可作为重度富营养化藻型湖区成功修复的案例,其生态修复经验对于持续推进大泊口、草海甚至整个滇池的生态环境修复具有重要的借鉴和参考价值。 相似文献
2.
为了揭示滇池不同湖区浮游动物群落稳定性及其驱动因子,于2020年对滇池草海、大泊口、外海3个具有一定空间分隔的区域,按季度进行4次采样调查。结果表明,大泊口区域的溶解氧、透明度指标显著高于外海,总氮、总磷、悬浮物、叶绿素a和化学需氧量等指标浓度显著低于外海,草海理化因子浓度介于大泊口与外海之间。研究期间3个区域共鉴定出浮游动物41属(枝角类12属、桡足类8属、轮虫21属),轮虫种类和密度均占较大比例。浮游动物年平均密度大泊口(7771.3 ind./L)>草海(2901.1 ind./L)>外海(634.8 ind./L);年平均生物量草海(3.72 mg/L)>大泊口(2.15 mg/L)>外海(2.09 mg/L)。非参数多元方差分析(PERMANOVA)与相似性百分比分析(SIMPER)结果表明,滇池3个区域间浮游动物群落结构差异极显著,导致大泊口与草海、外海群落结构呈极显著差异的属种为轮虫类群的种类,导致草海与外海群落结构呈极显著差异的属种为枝角类和轮虫类群的种类。此外,浮游动物群落稳定性与物种多样性呈显著的正相关关系,且经过生态修复后水质有所改善的湖区其浮游动物群落稳定性反而有所下降。 Pearson相关性分析与冗余分析结果表明,影响浮游动物群落稳定性的主导环境因子为溶解氧、pH和叶绿素a。本研究结果发现滇池异质生境的浮游动物群落稳定性存在较大差异,生态修复后短期内水环境的变化会降低以耐污种为优势所形成的浮游动物群落稳定性。 相似文献
3.
由于具有高效的CO2-浓缩机制,蓝藻在低CO2浓度条件下具有竞争优势。然而,随着大气中CO2浓度急剧增加,蓝藻CO2-浓缩机制如何响应的研究较少。因此,本文以常见水华蓝藻——微囊藻为研究对象,通过对滇池微囊藻水华动态及不同CO2-浓缩机制基因型进行监测,探讨蓝藻CO2-浓缩机制基因的微进化特征及其动态变化。同时,设置高(0.08%)、中(0.04%)、低(0.02%)CO2浓度(V/V)进一步揭示微囊藻不同CO2-浓缩机制基因微进化对CO2的竞争效应。结果表明:滇池无机碳浓度在4个采样点存在空间差异性,均呈现先降低后升高的趋势,并以HCO-3为主要无机碳存在形式。调查期间,东大河、观音山、洛龙河和生态所4个采样点的微囊藻均以sbtA基因型占绝对优势,相对丰度远高于bicA基因型。在不同水华时期,bicA基因型和sbtA基因型呈现相反的变化趋势,即从水华前期到水华中期,sbtA基因型的相对丰度逐渐升高,而到水华后期,出现bicA基因型增多的现象。室内竞争实验同样表明高浓度CO2培养环境下,bicA基因型具有明显竞争优势,随CO2浓度的降低,呈现bicA基因型向sbtA基因型转变的趋势。这些结果表明水华中期无机碳浓度相对较低,能适应碳限制环境的sbtA基因型的微囊藻表现出竞争优势,而对CO2浓度变化敏感的bicA基因型的微囊藻随无机碳浓度的升高逐渐增多;同时,在总碱度,pH和Chl.a影响下,微囊藻基因型在滇池不同微囊藻水华期呈现bicA→sbtA→bicA转变。这些结果说明微囊藻能通过调节不同CO2-浓缩机制基因藻株响应水体无机碳浓度,保持种群竞争优势,并维持水华的形成。 相似文献
4.
氮、磷浓度是制约湖泊营养状态和生产力水平的重要环境因子,而氮磷化学计量比是湖泊生态系统的主要指标,因此,判识氮磷比变化趋势及其驱动力对湖泊生态恢复具有重要意义.研究基于19882018年连续观测数据,分析了滇池氮磷浓度和氮磷摩尔比(简称氮磷比)的时空分布演变特征;采用多元线性回归模型分别对滇池草海和外海氮磷比驱动效应进行定量解析,筛选出影响湖体氮磷比变化的潜在驱动因子.结果表明:①19882018年滇池氮磷比呈现显著的线性上升趋势,其中草海和外海氮磷比分别上升1.3和0.7 a^-1.②草海和外海分别在2008年和2004年发生了氮磷比上升突变,突变前上升归因于总氮浓度快速增加,突变后则是由于总磷浓度下降较快.③滇池的氮磷浓度变化主要是受流域氮磷输入负荷、跨流域调水、流域氮磷削减、风速和水位的综合影响,但受控因子在不同区域可能存在差异.④气温是滇池氮磷比变化的主要驱动因子,流域人为氮磷输入差异是滇池氮磷比变化的次要驱动因子. 相似文献
5.
为研究滇池内源污染特征,2013年利用GIS软件针对滇池全湖布设36个采样点,采集表层沉积物,研究滇池表层沉积物铵态氮(NH_4+-N)吸附特征,同时分析沉积物的理化性质对NH_4+-N吸附特性的影响.结果表明:滇池表层沉积物对NH_4+-N的吸附量在前2 h之内呈增长趋势,吸附速率较大,之后沉积物对NH_4+-N的吸附量不随时间变化而变化,基本达到平衡,最大吸附速率均发生在0~5 min内;不同区域表层沉积物NH_4+-N最大吸附速率平均值表现为:外海南部湖心区外海北部草海,最大吸附量平均值表现为:湖心区外海南部外海北部草海,吸附效率平均值表现为:外海北部草海湖心区外海南部;沉积物对NH4+-N的吸附量与NH_4+-N的初始浓度大致呈线性关系,并且低浓度下表现出很好的吸附/解吸特征;滇池表层沉积物NH_4+-N的吸附解吸平衡浓度(ENC0)高于上覆水中NH_4+-N浓度,表明沉积物中NH_4+-N有向上覆水中释放的风险,沉积物在很长一段时间内起到水体污染"源"的作用;ENC0与沉积物中总氮、NH_4+-N含量呈显著正相关,本底吸附量和有机质总量呈显著负相关,沉积物吸附NH_4+-N主要受有机质的影响. 相似文献
6.
选取生态系统中重要的组成成份:浮游植物、底栖动物、水生植物的历史演变和现在分布状况数据,结合水质变化情况,揭示了滇池生态系统退化原因:在外因上,污染物持续输入以及围湖造田、直立堤岸和水量交换缓慢等外力干扰加剧系统组分失衡是直接原因;在内因上,由于滇池所处的地理位置、气候等原因,蓝藻生物量对营养盐增加的响应远高于其他湖泊(太湖、巢湖),草型向藻型湖泊的转换进程更快;与太湖和东湖的生态系统比较,高原湖泊滇池生态系统相对脆弱,如物种的同域分化、窄生态位,导致系统的稳定性差、自我修复能力弱.通过对滇池生态格局特征、湖岸带结构的分析,将滇池划分为5个生态区:草海重污染区、藻类聚集区、沉水植被残存区、近岸带受损区和水生植被受损区,并提出"五区三步,南北并进,重点突破,治理与修复相结合"的滇池生态系统分区分步治理的新策略和"南部优先恢复;北部控藻治污;西部自然保护;东部外围突破"的总体方案. 相似文献
7.
蓝藻水华暴发是在一定的营养、气候、水文条件和生态环境下形成的藻类过度繁殖和聚集的现象,是水体环境因子(如总氮、总磷、pH值、溶解氧)和气象因子综合作用的结果.然而滇池周年性水华暴发标志着滇池蓝藻水华在当前水质条件下,气象因子为关键影响因子.为了进一步探究滇池蓝藻水华发生与气象因子的规律,本文利用2010-2011年滇池蓝藻水华遥感监测资料与周边地面气象站逐月资料,研究滇池蓝藻水华月发生频率与月气象因子的关系.结果显示,滇池蓝藻水华发生频率与平均气温、最低气温、平均风速、累计日照时数和降雨量等气象因子均表现为显著相关,其中与日照时数和风速呈显著负相关.各因子中与风速的相关系数最高,说明滇池各月蓝藻水华发生频率高低与风速关系最为密切,进一步验证了在具备蓝藻水华发生所需营养盐条件下,水体稳定性对蓝藻水华发生的影响更为重要的结论.以上结果可为科学预测蓝藻水华发生,并采取相应措施减少其带来的影响提供理论依据. 相似文献
8.
2015年6-10月通过原位采集滇池沉水植物分布区和无植物对照区柱状沉积物间隙水,分析其溶解性总氮(DTN)和溶解性总磷(DTP)、溶解性无机氮(DIN)和溶解性无机磷(DIP)及溶解性有机氮(DON)和溶解性有机磷(DOP)浓度的时空变化,探讨沉水植物分布对间隙水氮、磷浓度、形态贡献及氮磷比的影响.结果表明:滇池沉水植物生长过程显著影响间隙水氮、磷浓度.与无植物对照区相比,沉水植物生长过程对间隙水氮浓度的削减主要发生在6、8月,而对间隙水磷浓度的削减主要发生在7月,反映了沉水植物对氮、磷两种元素的生物地球化学循环作用机制不同;间隙水氮形态贡献受季节性影响较大,6-7月以DON贡献为主,沉水植物分布区和无植物对照区分别达到61%和84%;而8-10月以DIN贡献为主,沉水植物分布区和无植物对照区分别为76%和75%;沉水植物分布区磷形态贡献随季节波动变化,沉水植物分布区以DOP贡献为主(63%),无植物对照区以DIP贡献为主(62%);沉水植物生长对沉积物间隙水各形态氮磷比影响显著.沉水植物生长显著增加间隙水DTN/DTP比,尤其是DIN/DIP比,相反降低DON/DOP比.沉水植物对间隙水氮、磷吸收及转化过程改变了沉积物氮、磷释放机制,从而影响上覆水氮、磷组成及氮磷比,很可能会影响到浮游植物生长及藻类水华过程,这对于湖泊水质管理具有重要意义. 相似文献
9.
在滇池福保湾不同区域应用Peeper(渗析膜式)技术,分析了底泥间隙水NH4 -N、Po43--p的垂向分布特征和近表层10cm内底泥的微生物活性(FDA)、碱性磷酸酶活性(APA),并对它们之间的相互关系进行了统计分析.结果表明,NH4 -N和Po43--p浓度自上覆水向下层间隙水呈先升后降趋势,反映它们有自间隙水向上覆水扩散的潜在危害;底泥有机质(Loss-on-Ignion,LOI)、APA和FDA活性也有从表层底泥向下层逐步降低的趋势.在空问分布上,Po43--p浓度变化为河口区>湾心区>西部沿岸区>东部沿岸区,与沉积物中LOI、APA和FDA活性的大小顺序基本相同.间隙水NH4 6-N浓度与表层10cm内底泥的APA和FDA活性具有显著正相关性(α=0.01).Po43--p浓度与底泥APA和FDA活性具有负相关性.但相关系数很低. 相似文献
10.
滇池北部福保湾主要承接上游昆明市的生活污水及周边工业污水,其污染程度极为严重.本研究在福保湖湾内设置4个采样点,分别采集了不同区域的沉积物,首次模拟研究了微囊藻(Microcystis)在不同沉积物环境中复苏能力差异,结果表明微囊藻在模拟实验中的复苏能力表现出对不同底质的不同适应性,入口湖区的沉积物对微囊藻的复苏有极强的抑制作用.藻类复苏后达到的最大生物量(以叶绿素a计)分别为东岸对照区的4.7%,西岸对照区的6.6%及吹填区的11.9%,其中微囊藻生物量也远低于其它各样点,占东岸对照、吹填区及西岸对照的比例分别为5.2%、10.3%和19.4%.以上研究暗示了河口处沉积物不适合微囊藻的复苏.福保湾藻类水华的种源贡献应该主要依靠外源性输入,即湖流场和风向所导致的藻类水平迁移贡献远远大于底泥复苏至水体的垂直迁移. 相似文献