首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  完全免费   3篇
  地球物理   185篇
  2018年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   17篇
  2008年   29篇
  2007年   10篇
  2006年   14篇
  2005年   3篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   9篇
  2000年   14篇
  1999年   13篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1987年   1篇
  1978年   2篇
排序方式: 共有185条查询结果,搜索用时 46 毫秒
1.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献
2.
新疆阿什库勒火山群野外地质科学考察   总被引:6,自引:0,他引:6  
2011年5月4日至5月30日,由中国地震局地质研究所和新疆维吾尔自治区地震局组成的科考队,完成了2010年度地震行业专项"新疆于田7.3级地震与阿什库勒火山综合科学考察"的野外综合科学考察。火山地质组通过对阿什库勒火山群的野外地质、地貌实地考察,初步查明了阿什库勒盆地新生代火山类型、数量、结构参数和火山活动历史,并且对该地区存在的一些有争议的问题,如阿什火山1951年5月27日喷发事件的报道、大黑山火山的喷发方式、高台山火山的存在与否等问题提供了野外证据。  相似文献
3.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献
4.
 The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows. Received: January 30, 1995 / Accepted: January 22, 1996  相似文献
5.
The ca. 8800 14C yrs BP Sulphur Creek lava flowed eastward 12 km from the Schriebers Meadow cinder cone into the Baker River valley, on the southeast flank of Mount Baker volcano. The compositionally-zoned basaltic to basaltic andesite lava entered, crossed and partially filled the 2-km-wide and > 100-m-deep early Holocene remnant of Glacial Lake Baker. The valley is now submerged beneath a reservoir, but seasonal drawdown permits study of the distal entrant lava. As a lava volume that may have been as much as 180 × 106 m3 entered the lake, the flow invaded the lacustrine sequence and extended to the opposite (east) side of the drowned Baker River valley. The volume and mobility of the lava can be attributed to a high flux rate, a prolonged eruption, or both. Basalt exposed below the former level of the remnant glacial lake is glassy or microcrystalline and sparsely vesicular, with pervasive hackly or blocky fractures. Together with pseudopillow fractures, these features reflect fracturing normal to penetrative thermal fronts and quenching by water. A fine-grained hyaloclastite facies was probably formed during quench fragmentation or isolated magma-water explosions. Although the structures closely resemble those developed in lava-ice contact environments, establishing the depositional environment for lava exhibiting similar intense fracturing should be confirmed by geologic evidence rather than by internal structure alone. The lava also invaded the lacustrine sequence, forming varieties of peperite, including sills that are conformable within the invaded strata and resemble volcaniclastic breccias. The peperite is generally fragmental and clast- or matrix-supported; fine-grained and rounded fluidal margins occur locally. The lava formed a thickened subaqueous plug that, as the lake drained in the mid-Holocene, was exposed to erosion. The Baker River then cut a 52-m-deep gorge through the shattered, highly erodible basalt.  相似文献
6.
Following its plinian eruption on 18 May 1980, Mount St Helens (Washington State, USA) entered a period of intermittent lava-dome extrusion until 1986. Renewed extrusion was frequently preceded by accelerating rates of seismicity, with more precursory seismicity observed prior to eruptions later in the sequence. Here the failure forecasting method (FFM) is used to investigate changes in the observed rate of volcano–tectonic (VT) seismicity. The analysis indicates that: (1) all VT crises resulted in an eruption within 3 weeks (usually less than 10 days), (2) the majority of eruptions had VT precursors, and (3) patterns of precursory seismicity showed fluctuations about the ideal model trend. Thus, although these seismic events could be used to warn of an impending eruption, specific forecasts were subject to an uncertainty of weeks or more. It is proposed that: (1) increased seismicity prior to later eruptions is a result of a larger and more solidified dome acting as a greater impediment to magma ascent; (2) the consistency of seismic swarms resulting in an eruption indicates that stresses high enough to initiate fracturing in the country rock and lava dome carapace were only achieved once the approach to an eruption had already begun; and (3) discrepancies between models of accelerating rock fracture and the observed seismicity may arise due to a significant amount of the rocks deforming through ductile mechanisms rather than seismogenic fracture.  相似文献
7.
跨孔电磁层析技术对桥墩溶岩洞的探测   总被引:2,自引:0,他引:2  
肇庆大桥位于西江流域,是连接肇庆和珠江三角洲地区的主要干线上的大桥。5个主桥墩位于溶洞和断层破碎带上,以往常用的单桩单孔的方法只能查有10cm直径垂直下方的溶洞分布情况,这种常规的方法难于查明整个桥墩位下方的溶洞分布情况,而且一孔之见难于达到技术要求。近年来发展起来的CT成像技术,正好可以弥补这方面的不足。本次电磁波CT探测法在肇庆大桥5个主桥墩的溶洞探测结果说明,这种方法是可行的,溶洞探测结果还经过最后的钻桩验证。  相似文献
8.
Miocene submarine basanite pillows, lava lobes, megapillows and sheet lavas in the Stanley Peninsula, northwestern Tasmania, Australia, are well-preserved in three dimensions. The pillows have ropy wrinkles, transverse wrinkles, symmetrical wrinkles, contraction cracks and three types of spreading cracks on their surfaces, and concentric and radial joints in the interior. The lava lobes have ropy wrinkles and contraction cracks on their surfaces. The megapillows are cylindrical with a smoothly curved upper surface and steep sides, and are characterized by distinct radial columnar joints in the interior. They are connected to pillows that propagate radially from its basal margin. The sheet lavas are tabular and have vertical columnar joints in the interior. The largest sheet lava shows a remarkable gradation from a lower 5-m-thick pillow facies to an upper massive facies. The pillows, lava lobes, megapillows and sheet lavas are inferred to have been emplaced completely below sea level but in a shallow marine environment. Their morphological features suggest that the pillows grew by episodic rupture of a near-solid crust and emergence of hot lava, whereas the lava lobes propagated by continuous stretching of the outer skin at the flow front. The megapillows and sheet lavas were master feeder channels by which molten lava was conveyed to the advancing pillows. The sheet lavas propagated by repeated processes of pillow formation and overriding by an upper massive part. Alternating pillow and massive facies commonly found in ocean-floor drill cores and exposed in cross-section in many subaqueous volcanic successions may have formed by propagation of pillows from the basal margins of advancing sheet lavas.  相似文献
9.
Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971–2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.  相似文献
10.
An eruption along a 2.5 km-long rhyolitic dyke at Krafla volcano, northern Iceland during the last glacial period formed a ridge of obsidian (Hrafntinnuhryggur). The ridge rises up to 80 m above the surrounding land and is composed of a number of small-volume lava bodies with minor fragmental material. The total volume is < 0.05 km3. The lava bodies are flow- or dome-like in morphology and many display columnar-jointed sides typical of magma–ice interaction, quench-fragmented lower margins indicative of interaction with meltwater and pumiceous upper surfaces typical of subaerial obsidian flows. The fragmental material compromises poorly-sorted perlitic quench hyaloclastites and poorly-exposed pumiceous tuffs. Lava bodies on the western ridge flanks are columnar jointed and extensively hydrothermally altered. At the southern end of the ridge the feeder dyke is exposed at an elevation  95 m beneath the ridge crest and flares upwards into a lava body.Using the distribution of lithofacies, we interpret that the eruption melted through ice only 35–55 m thick, which is likely to have been dominated by firn. Hrafntinnuhryggur is therefore the first documented example of a rhyolitic fissure eruption beneath thin ice/firn. The eruption breached the ice, leading to subaerial but ice/firn-contact lava effusion, and only minor explosive activity occurred. The ridge appears to have been well-drained during the eruption, aided by the high permeability of the thin ice/firn, which appears not to have greatly affected the eruption mechanisms. We estimate that the eruption lasted between 2 and 20 months and would not have generated a significant jökulhlaup (< 70 m3 s− 1).  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号