首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
地球物理   11篇
地质学   5篇
海洋学   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  1995年   4篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The microbial transformation of typical tar oil compounds such as acridine, benzo(b)thiophene, dibenzofuran, indane, and indene under different redox conditions was investigated in microcosm studies. Under aerobic conditions the inherent contamination in polluted soil as well as the added N‐, S‐, O‐ heterocyclic and homocyclic compounds were transformed predominantly apart from thiophene. 1‐Indanone was detected by RP‐HPLC‐DAD and GC‐MS as an intermediate metabolite from indane and indene. Under nitrate and sulfate reducing conditions indane, benzo(b)thiophene, and dibenzofuran were transformed in assays with the polluted soil samples from well B 65 and B 66 within 426 days, whereas they were persistent in assays with the highly polluted soil B 67. All heterocyclic and homocyclic compounds added to the non‐contaminated soil from well B 85 were not degraded under nitrate and sulfate reducing conditions, too. The results indicate that for the decision, wether natural attenuation can be implemented in the remediation of contaminated site, in addition to BTEX and PAHs especially the fate of further tar oil compounds in anoxic aquifers has to be considered.  相似文献   
2.
在营养物供给量较大的实验条件下,鲢、鳙放养明显地改变了微型生态系统的群落结构、代谢和理化环境,以致实验后期鳙单养和鲢、鳙混养系统出现不同程度的富营养化。微型生态系统中浮游植物密度的增长不完全由营养级联效应所致,但初级生产力的组间差异可大致依据营养级联假说来解释。实验结果认为,以提高鱼产量为目标的鲢、鳙高密度放养,对加速营养物来源丰富的天然水域的富营养化起着重要的作用。  相似文献   
3.
An understanding of the dynamic relationship between nitrogen supply and the formation of phytoplankton biomass is important in predicting and avoiding marine eutrophication. This relationship can be expressed as the short-term yield q of chlorophyll from dissolved available inorganic nitrogen (DAIN), the sum of nitrate, nitrite and ammonium. This paper communicates the results of a continuous culture nitrate enrichment experiment undertaken to investigate the cumulative yield of chlorophyll from DAIN (q). The purposes of the study were: to acquire a better understanding of the relationship between chlorophyll formation and DAIN; to obtain values that could be used in models for predicting eutrophication. The results of a time series experiment carried out using microplankton (all organisms <200 μm in size) indicate that the parameter q does not have a single value but is affected by the ecophysiological response of phytoplankton to changing nutrient status after an enrichment event. It is also dependent on changes in the allocation of nitrogen between autotrophs and heterotrophs. The value of yield obtained at the height of the bloom can be represented by q (max) (2.35 μg chl (μmol N)−1). The post-bloom, steady state value of q can be represented by qeq (0.95 μg chl (μmol N)−1). The microcosm steady state yield was not significantly different from the median value obtained from synoptic studies of Scottish west coast waters. It is proposed that qeq is the most appropriate value for assessing the general potential for eutrophication resulting from continuous nutrient enrichment into coastal waters. It is further proposed that q (max) be used for cases of sporadic enrichment and where a short burst of unrestricted growth may be detrimental.  相似文献   
4.
Weathering of mine tailings have resulted in high As concentrations in water (up to 2900 μg l− 1) and sediment (up to 900 mg kg− 1) samples around the Adak mine. Notably, As occurs as As(III) species (15–85%) in the oxic surface and ground water samples, which is not common. Time-series based sediment incubations were set up in the laboratory with contaminated sediments to study the microbial processes involved in transformation and remobilization of As across the sediment–water interface. The microcosm experiments indicate that microorganisms are capable of surviving in As-rich sediments and reduce As(V) to As(III). A decrease in total As concentration in sediments is coupled to an increase in As(III) concentration in the aqueous media. In contrast, the controls (treated with HgCl2 and formaldehyde) did not show growth, and As(V) concentrations increased steadily in the sediments and aqueous medium. The results imply that active metabolism is necessary for As(V) reduction. These microorganisms possess reduction mechanisms that are not necessarily coupled to respiration, but most likely impart resistance to As toxicity.  相似文献   
5.
鲢、鳙放养使微型生态系统的水柱氮、磷浓度和磷的分布发生了明显的变化。至实验结束时,各实验组的水柱颗粒磷、总磷和氨氮浓度都比对照组高,而正磷酸盐浓度和沉积物磷的量均低于对照组。这种变化以鳙单养系统为最大,其次是鲢、鳙混养系统,鲢单养系统的变化最小。微型生态系统中正磷酸盐浓度同浮游动、植物密度和初级生产力显著相关,氨氮浓度同所述变量之间的相关关系则多半与正磷酸盐相反。实验观测期间浮游植物密度与总磷浓度之间存在营养级联假说所预见的下行影响,实验结束时二者之间却有上行影响的趋向。根据实验观测结果认为,微型生态系统营养物(尤其是磷)水平的变动,主要是鲢、鳙的摄食改变了系统的群属结构和代谢强度的结果,同时反映了实验鱼对系统中营养物再生的影响。  相似文献   
6.
The basin-fill aquifers of the Western U.S. contain elevated concentrations of arsenic in the groundwater due to ancient volcanic deposits that host arsenic minerals. Microcosms were constructed using two oxidized sediments and, by contrast, a reduced sediment collected from a shallow basin-fill aquifer in the Cache Valley Basin, Northern Utah to evaluate the fate of geologic arsenic under anoxic conditions. Sequential extractions indicated the primary arsenic host mineral was amorphous iron oxides, but 13%–17% of the total arsenic was associated with carbonate minerals. Arsenic was solubilized from the sediments when incubated with groundwater in the presence of native organic carbon. Arsenic solubilization occurred prior to iron reduction rather than the commonly observed co-reactivity. Arsenic(V) associated with carbonate minerals was the main source of arsenic released to solution and redistributed onto less soluble minerals, including FeS and siderite as defined by chemical extraction. Arsenic reduction occurred only in the site-oxidized sediments. The addition of a carbon and energy source, glucose, resulted in enhanced arsenic solubilization, which was coupled with iron reduction from the site-oxidized sediments. Adding glucose promoted iron reduction that masked the role of carbonate minerals in arsenic solubilization and retention as observed with incubation with groundwater only.  相似文献   
7.
Microcosm experiments were conducted to understand the mechanism of microbially mediated mobilization of Fe and As from high arsenic aquifer sediments. Arsenic-resistant strains isolated from aquifer sediments of a borehole specifically drilled for this study at Datong basin were used as inoculated strains, and glucose and sodium acetate as carbon sources for the experiments. In abiotic control experiments, the maximum concentrations of Fe and As were only 0.47 mg/L and 0.9 μg/L, respectively. By contrast, the maximum contents of Fe and As in anaerobic microcosm experiments were much higher (up to 1.82 mg/L and 12.91 μg/L, respectively), indicating the crucial roles of microbial activities in Fe and As mobilization. The observed difference in Fe and As release with different carbon sources may be related to the difference in growth pattern and composition of microbial communities that develop in response to the type of carbon sources.  相似文献   
8.
链、镛放养使微型生态系统的水柱氮、磷浓度和磷的分布发生了明显的变化。至实验结束时,各实验组的水柱颗粒磷、总磷和氨氮浓度都比对照组高,而正磷酸盐浓试和沉积物磷的量均低于对照组。这种变化以鳙单养系统为最大,其次是链、镛混养系统,链单养系统的变化最小。微型生态系统中正磷酸盐浓度同浮游动、植物密度和初级生产力显著相关,氨氮浓度同所述变量之间的相关关系则多半与正磷酸盐相反。实验观测期间浮游植物密度与总磷浓度  相似文献   
9.
Microcosm tests were conducted to investigate the effects of the estrogenic substances nonylphenol (NP) and 17α‐ethinylestradiol (EE) on aquatic ecosystems. Maximum concentrations of 9 to 120 μg L—1 NP resp. 49 to 724 ng L—1 EE were induced by controlled release. The controlled release method allows the establishment of a continuous concentration course. The microcosms proved to run robustly with abiotic conditions close to natural. They developed biocenosis with similar characteristics as in natural ecosystems and, considering their given level of complexity, they can be used to describe possible risks for the environment. Both tested chemicals unveiled the potential to affect the plankton communities in the tested concentration range. NP exposure caused a reduction of Cladocera and Copepoda abundances and disturbed the phytoplankton structure. A NOECcommunity of 30 μg L—1 was calculated. In the first EE study, a flood in the lake where the microcosm water was collected caused additional stress and thereby a high variability, both between the microcosms and in each microcosm over time. Probably therefore the only effect found was a reduction of Copepoda abundance. In a second EE study Cladocera and Copepoda abundances were reduced, from which the phytoplankton benefited. Although a final interpretation is difficult for results of microcosm tests, there are indications that the found effects of EE and perhaps also NP may be caused at least partially by endocrine disruptive activity.  相似文献   
10.
The Athabasca Oil Sands contain one of the world's largest oil reserves consisting of approximately 168 billion barrels of currently recoverable bitumen. With 20% recoverable through open pit mining methods, this extraction process produces a considerable amount of fluid fine tailings (FFT) waste material, which must be deposited on site in tailings ponds. These ponds allow the waste sand, clay and residual bitumen to settle out of the water column, allowing for the water to be recycled for use again in the extraction process. It is vital to gain a better understanding of the processes contributing to the development of physicochemical gradients (pH, Eh, Oxygen etc…) that form in these tailings ponds over time, with the goal of remediation and subsequent construction of end-pit lake systems once oil extraction has ceased. To differentiate between the impacts of biotic and abiotic processes in fresh (newly processed material) and mature FFT (∼38 year old tailings) over a 52-week study, a specific experimental design was utilized in accordance with novel microsensor profiling techniques. The sulfide diffusive fluxes within mature biotic systems measured 37.6 μmol m−2 day−1 at the onset of the experiment, decreasing over time, as FeS mineralization progressed. In addition, DO fluxes also showed strong correlation to the physical affects of consolidation, and overall biological consumption of O2 at the FFT-water interface. This holistic study comparing different tailings pond materials provides insight regarding biotransformation and physicochemical controls effecting sediment oxygen demand associated with reclaimed wetlands and end pit lake development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号