首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  国内免费   1篇
地球物理   6篇
地质学   2篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2010年   2篇
  2009年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
南北极全氟化合物的含量、分布及迁移   总被引:2,自引:0,他引:2       下载免费PDF全文
武晓果  谢周清 《极地研究》2009,21(3):197-210
全氟化合物被广泛用于工业和日常生活中。近年来,发现该类化合物对人体和生物体有较大的毒性,由此引发了人们对其污染程度的高度关注。最近,从南极和北极的一些生物体内也检测出了全氟化合物。这表明该类化合物已经成为一种新的全球性的持久的有机污染物,因此,应该对其含量、分布、迁移和转化机制进行必要的研究。  相似文献   
2.
Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C4–C8 perfluorinated sulfonates (PFSAs), C6 and C8 perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C5–C13 perfluorinated carboxylic acids (PFCAs), C4 and C8 perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. ∑PFC concentrations of the river water ranged from 7.6 to 26.4 ng L−1, whereas ∑PFC concentrations of WWTP effluents were approximately 5–10 times higher (30.5–266.3 ng L−1), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.  相似文献   
3.
The spatial distribution of polyfluoroalkyl compounds (PFCs) was investigated in dab (Limanda limanda) bile fluids collected from Iceland and the North Sea. Concentrations of various PFCs, including perfluorinated sulfonates (C4-C6, C8 PFSAs), perfluorinated carboxylic acids (C9-C14 PFCAs) and n-methyl perfluorooctane sulfonamidoethanol (MeFOSE), were quantified. Perfluorooctane sulfonate (PFOS) was the predominant compound with highest concentrations along the Danish and German coast (mean 9.36 ng/g wet weight (ww)). Significantly lower PFOS concentrations were found at the other sampling stations in the North Sea and Iceland (< 0.01, t-test). Conversely, the spatial distribution of the PFCAs in Iceland and the North Sea was more uniform. The most abundant PFCA was perfluorononanoic acid (PFNA), while the mean concentration decreased with increasing chain length from 4.7 ng/g ww for PFNA to 0.04 ng/g ww for perfluorotetradecanoic acid (PFTeDA). Overall, the different spatial distribution of PFCs indicates different origin of sources and different transportation mechanism.  相似文献   
4.
为查明千岛湖水体中全氟化合物(PFCs)的污染特征,于2017年丰水期和枯水期分别采集13个监测断面的表层水样品,采用固相萃取净化、富集水样,超高效液相色谱串联质谱联用法测定水中16种PFCs,研究其残留水平和分布特征监测结果表明,千岛湖表层水共检出5种中短链PFCs,包括C_4全氟烷基磺酸以及C_4、C_5、C_6和C_8 4种全氟烷基羧酸ΣPFCs浓度范围为1.70~6.21 ng/L,以全氟辛酸(PFOA)为主要污染物,其浓度范围为0.52~3.61 ng/L,全氟辛烷磺酸(PFOS)则未检出与国内外同类水体相比,PFOA和PFOS浓度水平均处于低污染水平枯水期千岛湖水中PFCs污染程度高于丰水期,整体上呈现点源污染特征各断面水体中ΣPFCs浓度枯水期差异较大,而丰水期基本处于同一浓度水平空间分布上主要入湖河流新安江上游断面街口和威坪的PFCs浓度明显高于其他主要入湖河流断面以及湖区断面.  相似文献   
5.
关于全氟化合物(PFCs)在我国农村环境中的分布还未见相关的报道。本文利用固相萃取分离富集结合高效液相色谱-电喷雾负电离源串联质谱法分析我国东部8个农村地区土壤、地表水、地下水样品中17种PFCs的污染水平和组成特征, 并利用比值法初步判定了水环境中PFCs的污染来源。结果显示, 土壤中全氟羧酸类以PFOA为主(0.34~14.5 ng/g), 全氟烷基磺酸类以PFOS为主(0.02~0.08 ng/g);地表水中PFCs以PFOA、PFHxA、PFOS和PFBA为主(4.8~29.6、0.73~31.8、nd~7.1和nd~6.1 ng/L);地下水中PFCs主要为PFOA、PFHxA、PFBA(nd~176、nd~50.1和0.08~16.1 ng/L)。土壤及水环境中PFCs总体上呈现从南到北递减的趋势;地表水中PFCs污染源大致分为生活污水和大气沉降两大类, 其中大气沉降的贡献较大。  相似文献   
6.
Surface sediment and biota were collected from 12 sampling sites – seven along the Pearl River Delta and five along the Hong Kong coastline. Perfluorinated compound (PFC) concentrations were detected using a high-performance-liquid-chromatogram–tandem-mass-spectrometry system. Analytical results indicated that the total PFC concentrations were in the range of 0.15–3.11 ng/g dry weight in sediments, while the total PFC concentrations in oyster and mussel samples were between 0.46–1.96 and 0.66–3.43 ng/g wet weight, respectively. The major types of PFCs detected in the sediment samples were perfluorooctanesulfonic acid (PFOS) and perfluorobutanoic acid (PFBA), with concentrations ranging from low limits of quantification to 0.86 ± 0.12 ng/g dry weight and 1.50 ± 0.26 ng/g dry weight, respectively. In bivalve samples, PFOS was the dominant contaminant with concentrations ranging from 0.25 ± 0.09 to 0.83 ± 0.12 ng/g wet weight in oysters and 0.41 ± 0.14 to 1.47 ± 0.25 ng/g wet weight in mussels. An increase in PFC concentration was found to be correlated with increased human population density in the study areas.  相似文献   
7.
Total body burden and tissue distribution of polyfluorinated compounds (PFCs) were investigated in harbor seals (Phoca vitulina) from the German Bight in 2007. A total number of 18 individual PFCs from the following groups could be quantified in the different tissues: perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs) and their precursors perfluorinated sulfinates (PFSiAs), perfluorinated sulfonamides, and sulfonamido ethanols. Perfluorooctanesulfonate (PFOS) was the predominant compound in all measured seal tissues (up to 1665 ng g−1 wet weight in liver tissue). The dominant PFCAs were perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), but their concentrations were much lower compared to PFOS. The mean whole body burden in harbor seals of all detected PFCs was estimated to be 2665 ± 1207 μg absolute. The major amount of the total PFCs burden in the bodies was in blood (38%) and liver (36%), followed by muscle (13%), lung (8%), kidney (2%), blubber (2%), heart (1%), brain (1%), thymus (<0.01%) and thyroid (<0.01%). These data suggest large differences in body burden and accumulation pattern of PFCs in marine mammals.  相似文献   
8.
The spatial distribution of 15 polyfluoroalkyl compounds (PFCs) in surface water was investigated in the North Sea, Baltic Sea and Norwegian Sea. In addition, an interlaboratory comparison of the sampling techniques and analysis was conducted. Highest concentration in the North Sea was found near the coast, whereas the ∑PFC concentration decreased rapidly from 18.4 to 0.07 ng l−1 towards the open North Sea. The river Elbe could identify as a local input source for PFCs into the North Sea, whereas perfluorobutanoic acid (PFBA) was transported into the sampling area with the easterly current. In contrast to the North Sea, the distribution of PFCs in the Baltic Sea was relatively homogenous, where diffuse sources dominated. In general, the composition profile was influenced from local sources caused by human activities, whereas atmospheric depositions of here analysed PFCs were negligible, but it could have possibly an influence on low contaminated sites like the open North Sea or Norwegian Sea.  相似文献   
9.
全氟化合物(PFCs)是一种新型持久性有机污染物,因具有持久性、生物蓄积性和高毒性而受到广泛关注。目前关于河流、污水、湖泊等地表水体中PFCs污染状况的研究较多,而地下水PFCs的相关研究相对较少。本文以北京市再生水灌区为例,探讨了典型PFCs化合物在地下水中的含量、分布及其生态风险,并重点关注了灌区内某垃圾填埋场周边地下水PFCs的影响。使用固相萃取-高效液相色谱-串联质谱法分析了2020年5~6月采集自北京市再生水灌区的52个地下水样品,结果表明灌区地下水中不同程度地检出包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs)在内的10种目标PFCs化合物,浓度范围为1.07~24.19ng/L,其中以全氟正丁酸(PFBA)、全氟正辛酸(PFOA)和全氟丁烷磺酸(PFBS)三类单体的检出浓度最高,平均浓度分别为2.94±2.42ng/L、2.88±3.45ng/L和1.15±2.05ng/L。与来自氟化学工业园的地下水相比,本研究区地下水中∑PFCs浓度明显偏低,这与本研究区观测井多处于农田区域有关。PFCs在浅井(<50m)与深井(>50m)中的浓度随着井深的增加有明显下降...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号