首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   15篇
  国内免费   17篇
测绘学   3篇
大气科学   8篇
地球物理   100篇
地质学   40篇
海洋学   45篇
综合类   3篇
自然地理   27篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   12篇
  2012年   8篇
  2011年   14篇
  2010年   14篇
  2009年   19篇
  2008年   29篇
  2007年   11篇
  2006年   13篇
  2005年   8篇
  2004年   4篇
  2003年   10篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
排序方式: 共有226条查询结果,搜索用时 31 毫秒
1.
Periodical algal blooms result in deposition and release of phosphorus (P) from the sediment into the water. Therefore, during seasonal changes when algal particles begin to settle to the bottom, understanding the behavior and distribution characteristics of the P in sediment is the most important key to manage the water quality of the Saemangeum Reservoir. In this study, the variation of water quality and sediment composition including chlorophyll-a (Chl-a) and P was investigated to determine the interaction between water and sediment. The study focused primarily on algal particle sedimentation that affects the P release and mineralization of sediment. The Chl-a concentration in water showed a sharp decline in October when the algae began to die in the fall, and afterward the concentration of chemical oxygen demand (COD) and total P (TP) in the sediment increased due to the sedimentation of decaying algal particles in November. During the same period of time, the readily bio-available P (RAP) in the sediment showed a drastic increase in the upper region where the Chl-a concentration of water was high. In sequence, the high RAP zone shifted from the upper region to the lower region in the early winter. The RAP shift was considered to be derived from the physical flow of the overlying water from which the decomposing algae settled on the surface of the sediment. The Saemangeum Reservoir was constructed recently; therefore, all the types of inorganic P fractions except soluble reactive phosphorus (SRP) that exist on the bottom surface of the lake and the marsh's sediment layer were not sufficient to significantly influence the overlying water. On the other hand, the released P from the algae was distinct and sensitive to the seasonal change. In conclusion, the algal particle sedimentation was important to control eutrophication rather than P release from the mineralized inorganic P of the sediment surface layer in the Seamangeum Reservoir.  相似文献   
2.
富营养化会导致浅水湖泊发生稳态转换,生态系统服务严重受损。磷是驱动湖泊发生稳态转换的重要环境因子,探究湖水磷浓度的变化规律是湖泊管理的关键。通过磷动力学模型,从影响湖水磷浓度的主要参数入手,探讨了每种参数变化对磷浓度的具体影响。结合前人研究结果,详细讨论了不同类型气候变化和人类活动对湖泊稳态转换时间、滞后时长、修复速率等的影响。研究认为,气候变化所导致的温度升高、光强减弱、风浪增强等和人类活动所导致的生物扰动、水位波动增强等因素变化虽不会改变湖泊稳态转换突变时间,但会推迟湖泊修复时间,造成突变阈值减小,滞后时间延长,稳态增大。在湖泊保护中要重点考虑主要外力驱动对湖泊稳态转换过程影响的区别,避免有害突变的发生。  相似文献   
3.
4.
The governments around the Baltic Sea have agreed on a new set of targets for nutrient load reductions. The major motive for this is new and better knowledge about the link between nutrient loads and water transparency in different parts of the sea. The Baltic Sea Action Plan (BSAP) defines target for transparency in different marine basins, the load reductions necessary to meet transparency targets and a scheme for the distribution of the abatement burden between countries adjacent to the sea.  相似文献   
5.
This global spatially explicit (0.5 by 0.5 degree) analysis presents the nitrogen (N) and phosphorus (P) inputs, processing and biogeochemical retention and delivery to surface waters and river export to coastal seas according to the five shared socioeconomic pathways (SSP). Four systems are considered: (i) human system; (ii) agriculture; (iii) aquaculture; (iv) nature. Exploring the changes during 1980–2015 and 2015–2050 according to the SSPs shows that the natural nutrient sources have been declining in the past decades and will continue to decline in all SSPs in future decades due to massive land transformations, while agriculture, human sewage and aquaculture are becoming increasingly dominant (globally up to 80% of nutrient delivery). More efforts than those employed in any of the SSPs are needed to slow down the global nutrient cycles. One of the drivers of the proliferation of harmful algal blooms is the tendency towards increasing N:P ratios in global freshwaters and export to the global coastal seas; this is the result of increasing N:P in inputs in food production, more efficient biogeochemical retention of P than of N in river basins, and groundwater N legacies, which seems to be most pronounced in a united world that strives after sustainability. The diverging strategies to achieve UN Sustainable Development Goals 14 (life below water), 2 (zero hunger) and 6 (clean water and sanitation) therefore require a balanced management system for both N and P in all systems, that accounts for future nutrient legacies.  相似文献   
6.
The solubility of iron, aluminium, manganese and phosphorus has been determined in aerosol samples collected between 49°N and 52°S during three cruises conducted in the Atlantic Ocean as part of the European Union funded IRONAGES programme. Solubilities (defined at pH 4.7) determined for Fe and Al in samples of Saharan dust were significantly lower (medians 1.7% and 3.0%, respectively) than the solubilities of these metals in aerosols from other source regions (whole dataset medians 5.2% and 9.0%, respectively). Mn solubility also varied with aerosol source, but the median solubility of Mn in Saharan dust was very similar to the median for the dataset as a whole (55% and 56%, respectively). The observed solubility of aerosol P was ∼ 32%, with P solubility in Saharan aerosol perhaps as low as 10%. Laboratory studies have indicated that aerosol Fe solubility is enhanced by acid processing. No relationship could be found between Fe solubility and the concentrations of acid species (non-seasalt SO42−, NO3) nor the net acidity of the aerosol, so we are unable to confirm that this process is significant in the atmosphere. In terms of the supply of soluble Fe to oceanic ecosystems on a global scale, the observed higher solubility for Fe in non-Saharan aerosols is probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic. On a smaller scale however, higher solubility for aerosol Fe may alter our understanding of Fe cycling in regions such as the remote Southern Ocean.  相似文献   
7.
Iron-rich concretions are frequently found around plant roots in Tagus estuary (Portugal) where radial delivery of O2 takes place. Salt marsh sediments exhibit cracks that are an additional feature to introduce O2 and other solutes in the upper sediments. Metal concentrations in salt marsh sediments are clearly above the background levels reflecting the anthropogenic sources from a large city with 2.5 million inhabitants, and several industrial centres. In order to evaluate how both oxidised structures influences the redistribution of redox sensitive elements in salt marsh sediments, concretions were collected from roots of Halimione portucaloides below the oxygenated zone. These tubular cylindrical structures were analysed for Fe, Al, Mn, As, and P along 1-cm radial transect in a millimetre scale from the inner part to the adjacent anoxic sediment. In addition, oxidised cracks were analysed for the same spatial resolution, from the sediment–water interface to anoxic layers (2-cm transept). The parallelism between Fe, As, and P concentrations at this microscale is the most noticeable aspect. Iron and As presented very high concentrations in the 4-mm concretions (3.4 mmol g−1 and 3.1 μmol g−1, respectively) and decreased sharply to the host sediment. Oxygen released from roots oxidise the solid sulphides, and the reduced Fe and As are transported towards the root by both diffusion and pore water flow associated with the root water uptake. Subsequently, Fe(III) precipitates and As is retained by sorption and/or coprecipitation. These elements are also enriched in the first 2-mm of oxidised cracks, but in lower concentrations (50% and 30%, respectively). Manganese concentrations in concretions were low (11.8 μmol g−1), indicating that Fe dominates the sediment chemistry. Phosphorus and iron concentrations in the ascorbate fraction were higher in the oxidising surfaces of concretions (10.7 μmol g−1 and 1.6 mmol g−1, respectively) and of cracks (5.1 μmol g−1 and 0.47 mmol g−1). The parallelism of Fe and As distributions includes not only their similar redox chemistries, but also that to phosphate, including control by coprecipitation of the host iron phases. The mechanisms involved in the mobilisation of As and P are however different, whereas As comes from the oxidation of iron sulphides; dissolved P derives from reduction of ferri-hydroxide phases.  相似文献   
8.
污水-海水混合过程中磷转移的动力学   总被引:5,自引:0,他引:5       下载免费PDF全文
模拟研究厦门市污水排海时污水-海水混合过程中磷含量和形态的变化,及其在海水-颗粒物界面交换的动力学过程;提供转移模式,确定转移速率,进行磷的容量校正,为厦门西海域环境容量估算和水质控制提供定量参数和理论依据。  相似文献   
9.
对多种经济双壳贝类和养殖中的污损动物的N和P排泄进行了测定 ,包括排泄成分和排泄速率。在这些动物的N排泄中 ,NH4 N占主要部分 ,如笼式养殖的双壳贝类NH4 N占总N排泄的平均值范围为 70 8%— 80 1 % ;氨基酸是第二大排泄成分 ,平均占总N排泄的 1 0 %—2 5 %。其他形态的N ,如尿素、亚硝酸盐和硝酸盐也有检出。在P排泄中 ,有机磷 (DOP)约占总溶解磷 (TDP)排泄的 1 5 %— 2 7%。据估算 ,整个四十里湾所养殖的双壳贝类在夏季每天将排泄4 5 4t总溶解氮 ,其中NH4 N 3 36t、Amino N 0 69t、Urea N 0 2t。同时每天磷的排泄为 0 5 7tTDP ,其中DOP 0 1 5t。对面积为 1 3× 1 0 4 hm2 的海区而言 ,贝类的N、P排泄分别能满足浮游植物生产所需N、P的 44%和 40 %。高密度的贝类养殖对养殖生态系统营养循环的影响是很显著的。附着动物 (柄海鞘等 )的N、P排泄及其对营养循环的影响也不容忽视。  相似文献   
10.
In order to study the sediment response to different addition of organic matter, we added cultures of the dinoflagellates Scrippsiella hangoei and Woloszynskia halophila and the diatom Pauliella taeniata to aquaria containing natural sediment. The biomass added was 1550–3260 mg C m−2, and in the control, no biomass was added (n=3). Oxygen profiles at the sediment–water interface and inorganic nutrients in the near bottom water were determined once a week. In the additions of P. taeniata and W. halophila the sediment quickly became anoxic, and subsequently there was a flux of >1 mmol PO43− m−2 d−1 out of the sediment in these treatments. The majority of the released P came from P stored in the sediment and not from the organic phosphorus added. The result was very different for the S. hangoei addition. This species underwent a life cycle change to form temporary cysts. During this process there was a net uptake of nutrients. After the formation of cysts the concentration of inorganic nutrient was similar to that of the control. Cysts generally survive for long periods in the sediment (months to years) before germinating, but can also be permanently buried in the sediment. The novel idea presented here is that the phytoplankton composition may directly affect sediment processes such as oxygen consumption and phosphorus release, through species-specific life cycle changes and yields of resting stages produced prior to sedimentation. This can be an important aspect of nutrient cycling in eutrophic waters, like the Baltic Sea, where there is large year-to-year difference in the amount of resting stages settling at the sea floor, mainly due to differences in abundance of diatoms and dinoflagellates during the spring bloom. If yields of resting stages change, e.g. due to changes in the phytoplankton community, it may lead to alterations in the biogeochemical cycling of nutrients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号