首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   9篇
  国内免费   14篇
大气科学   7篇
地球物理   13篇
地质学   142篇
海洋学   6篇
天文学   2篇
自然地理   70篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   10篇
  2013年   6篇
  2011年   12篇
  2010年   16篇
  2009年   19篇
  2008年   19篇
  2007年   27篇
  2006年   22篇
  2005年   28篇
  2004年   12篇
  2003年   16篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   8篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
1.
Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.  相似文献   
2.
Flower and fruit production of the abundant, tall, long-lived, dioecious, surface-pollinating seagrass species Enhalus acoroides (L.) Royle were estimated at seven sites in the reef flats off Bolinao (NW Luzon, The Philippines) featuring different fragmentation of the seagrass meadows. Fragmentation of the seagrass meadow was quantified as cover of E. acoroides and all seagrass species present in 20×20 m plots. E. acoroides and overall seagrass cover were correlated positively. The proportion of female flowers of E. acoroides that developed a fruit increased sharply as overall seagrass cover was around 50%. Apparent sex ratio bore no relationship with overall seagrass cover. This threshold-type of relationship suggests that fragmentation of seagrass meadows can have a major effect on the reproductive output of this species. A possible mechanism underlying these results would be a non-linear increase of the efficiency of trapping the surface-dispersed pollen with increasing seagrass canopy density. This provides the first evidence based on real data that fragmentation can affect the population dynamics of seagrass species.  相似文献   
3.
本文应用青海湖QH85-14C孔取得的具有~(14)C测年数据所支持的原始孢粉资料,进行数值分析(有序聚类、主成份分析、滑动平均和回归分析)。从而对青海湖区11000年以来的植被和气候变化进一步讨论。  相似文献   
4.
We investigated a late Quaternary terrestrial sedimentary sequence (Uwa Formation) in core IC2, from a site adjacent to that of the reported core IC on NW Shikoku Island, SW Japan, and developed its tephra and pollen stratigraphy to refine the age model of the formation. First, we identified 19 horizons with high glass shard concentrations in the IC2 core sediments as possible tephras or cryptotephras, and correlated them with reported tephras on the basis of the major- and trace-element compositions of their glass shards. All correlated widespread tephras and cryptotephras were products of volcanoes in the Kyushu volcanic zone (Aso, Kakuto, Aira, Ata, and Kikai calderas). Second, we confirmed the presence in core IC2 of two pollen zones dominated by Quercus subgen. Cyclobalanopsis, which is an indicator of very warm interglacial vegetation. In the Japanese Islands, these two vegetation zones have usually been considered to characterize marine isotopic stages (MISs) 1 and 11. A previous study of the Uwa Formation correlated the upper pollen zone to MIS 1, but the lower zone was not correlated to MIS 11; rather, it was inferred to be older than MIS 12 because it was stratigraphically below the “Oda” tephra (equivalent to a distal Kasamori 5 [Ks5] tephra [MIS 12]). In this study, however, noting that the Naruohama-IV tephra (Nh-IV; MIS 10d) and Ks5 cannot be distinguished by their shard chemistries, we inferred that the suggested “Oda” tephra actually correlates to Nh-IV, rather than to the Ks5 tephra. By re-assigning the “Oda” tephra to Nh-IV, we could correlate the underlying Quercus subgen. Cyclobalanopsis-abundant zone to MIS 11 and, consequently, a pair of pollen zones indicating cool and warm conditions below the MIS 11 pollen zone to MISs 12 and 13, respectively. The resulting age model whereby tephra and pollen constraints are integrated showed a roughly constant sedimentation rate from MIS 13, without any long-term gaps; further, our MIS 13 horizon in core IC2 corresponds to the reported 1 Ma tephra horizon in core IC. Therefore, these findings represent a dramatic change in the Uwa Formation age model and validate the Uwa Formation as one of the most useful terrestrial archives of Quaternary tephrostratigraphy and paleoclimatic fluctuation in SW Japan.  相似文献   
5.
We report high-resolution macroscopic charcoal, pollen and sedimentological data for Agua Caliente, a freshwater lagoon located in southern Belize, and infer a late Holocene record of human land-use/climate interactions for the nearby prehistoric Maya center of Uxbenká. Land-use activities spanning the initial clearance of forests for agriculture through the drought-linked Maya collapse and continuing into the historic recolonization of the region are all reflected in the record. Human land alteration in association with swidden agriculture is evident early in the record during the Middle Preclassic starting ca. 2600 cal yr BP. Fire slowly tapered off during the Late and Terminal Classic, consistent with the gradual political demise and depopulation of the Uxbenká polity sometime between ca. 1150 and 950 cal yr BP, during a period of multiple droughts evident in a nearby speleothem record. Fire activity was at its lowest during the Maya Postclassic ca. 950–430 cal yr BP, but rose consistent with increasing recolonization of the region between ca. 430 cal yr BP and present. These data suggest that this environmental record provides both a proxy for 2800 years of cultural change, including colonization, growth, decline, and reorganization of regional populations, and an independent confirmation of recent paleoclimate reconstructions from the same region.  相似文献   
6.
Detailed, chronologically tightly constrained, lake-sediment-based geochemical and pollen records have enabled local changes in soil erosion, woodland cover and composition, and prehistoric farming impact to be reconstructed in considerable detail. The profile opens shortly after 7800 BC when tall canopy trees were well-established and presumably in equilibrium with their environment. A distinct perturbation that involved an increase in pine and birch, a decrease in oak and a minor opening-up of the woodland is regarded as the local expression of the 8.2 ka climate anomaly. Lack of response in the geochemical erosional indicators is interpreted as evidence for drier conditions. A short-lived, over-compensation in climate recovery followed the 8.2 ka event. Neolithic farming impact is clearly expressed in both the pollen and geochemical data. Both datasets indicate that Neolithic impact was concentrated in the early Neolithic (3715–3440 BC). In the interval 3000–2700 BC there appears to have been a break in farming activity. The pollen data suggest substantially increased farming impact (both arable and pastoral) in the Bronze Age, with maximum farming and woodland clearances taking place in the late Bronze Age (1155–935 BC). These developments are poorly expressed in the geochemical record, possibly due to within-lake changes.  相似文献   
7.
Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cal yr BP when Pinus ponderosa became established. C/N ratios, δ13C and δ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.  相似文献   
8.
Detailed reconstructions of the vegetation of Iberia during the last glacial inception are rare due to the limited number of terrestrial sites recording this period. Active retreat of El Asperillo cliff, located on the Atlantic coast of southwestern Iberia, has exposed a fossil organic level dating back to one of the early stades of the last glacial cycle. Pollen and macrofossil analyses from this site show that the Doñana area was covered mainly by steppic vegetation; temperate trees survived the coldest periods, albeit in reduced numbers. Mediterranean taxa are extremely reduced, in contrast with other dry areas of southern Iberia over this time span. This vegetation suggests cold and arid climatic conditions, in accordance with paleoclimatic reconstructions based on several Atlantic marine cores.  相似文献   
9.
This study of fossils (pollen, plant macrofossils, stomata and fish) and sediments (lithostratigraphy and geochemistry) from the Wendel site in North Dakota, USA, emphasizes the importance of considering ground-water hydrology when deciphering paleoclimate signals from lakes in postglacial landscapes. The Wendel site was a paleolake from about 11,500 14C yr BP to 11,100 14C yr BP. Afterwards, the lake-level lowered until it became a prairie marsh by 9,300 14C yr BP and finally, at 8,500 14C yr BP, an ephemeral wetland as it is today. Meanwhile, the vegetation changed from a white spruce parkland (11,500 to 10,500 14C yr BP) to deciduous parkland, followed by grassland at 9,300 14C yr BP. The pattern and timing of these aquatic and terrestrial changes are similar to coeval kettle lake records from adjacent uplands, providing a regional aridity signal. However, two local sources of ground water were identified from the fossil and geochemical data, which mediated atmospheric inputs to the Wendel basin. First, the paleolake received water from the melting of stagnant ice buried under local till for about 900 years after glacier recession. Later, Holocene droughts probably caused the lower-elevation Wendel site to capture the ground water of up-gradient lakes.  相似文献   
10.
High-resolution seismic reflection profile data show that the modern sediment cover (over the last 150 years) in Georgian Bay is thin and spatially discontinuous. Sediments rich in ragweed pollen, largely derived from siltation linked to land clearing and European settlement, form a thin, discontinuous veneer on the lakebed. Much of the lakebed consists of exposed sediments deposited during the late glacial or early postglacial. Accumulation rates of modern sediments range from < 0 mm/year (net erosion) to ∼3.2 mm/year, often within a few hundred metres spatially. These rates are much lower than those reported for the main basin of Lake Huron and the other Great Lakes, and are attributed to the low sediment supply. Only a few small rivers flow into Georgian Bay, and most of the basin is surrounded by bedrock of Precambrian gneiss and granite to the east, and Silurian dolostone, limestone and shale to the west. Thick deposits of Pleistocene drift, found on the Georgian Bay shoreline only between Meaford and Port Severn, are the main sediment source for the entire basin at present. Holocene to modern sediments are even absent from some deep basins of Georgian Bay. These findings have implications for the ultimate fate of anthropogenic contaminants in Georgian Bay. While microfossil assemblages in the ragweed-rich sediments record increased eutrophication over the last 150 years, most pollutants generated in the Georgian Bay catchment are not accumulating on the lakebed and are probably exported from the Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号