首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 19 毫秒
1
1.
We use the slowness-azimuth station correction (SASC) method to improve the location accuracy of the Wenchuan aftershocks recorded by the Nagqu and Hotan seismic arrays. The results show that the standard deviations of back-azimuth and slowness errors of Wenchuan aftershocks recorded by the Nagqu array decreased by 32% and 58% respectively after correction. The decrease is 38 % and 71% for the Hotan array. After the correction, the location accuracy of all Wenchuan aftershocks recorded by the Nagqu array is improved. For the Hotan array, the accuracy is improved in the slowness estimation for 78 % of aftershocks and in back-azimuth estimation for all aftershocks.  相似文献   
2.
The seismic arrays at Hailar (HILR) and at Lanzhou (LZDM) in China are both primary stations of the International Monitoring System for verifying compliance with the Comprehensive Nuclear Test Ban Treaty. These two stations became operational in 2002 and have since then provided continuous data. In this study, the so-called slowness–azimuth station corrections (SASC) were derived and used to improve the location accuracy of the two arrays. The SASC are found by comparing the back-azimuth and slownesses obtained from array processing to the theoretical values calculated from the reported event locations and the corresponding seismic velocity model. Events reported by the National Earthquake International Center in the time period 2002 to 2006 were used as reference events, and the IASP91 was used as the theoretical velocity model. Small correction vectors with random orientation were found for HILR. Larger correction vectors with systematic vector biases were found for LZDM. The LZDM correction vectors seem to point to the same direction in a large part of the slowness space and may be attributed to local structure. After introducing the SASC for HILR, the standard deviations of back-azimuth and slowness residuals drop from 7.1° to 4.6° and from 1.0 to 0.6 s/°, respectively. For LZDM, these values drop from 22.3° to 10.2° and from 2.9 to 1.1 s/°, respectively. The variations of back-azimuth and slowness residuals were reduced by 32% and 30.2%, respectively, for HILR after SASC and the reductions were 21% and 40.2% for LZDM. The improvements were 77% in back-azimuth and 67% in slowness location for HILR and were 79% and 81% for LZDM after SASC. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
郝春月  郑重  张爽 《中国地震》2013,29(4):472-479
针对汶川地震序列,利用慢度-方位角台站校正( SASC)法来提高那曲、和田2 个台阵的定位精度。结果显示,那曲台阵对汶川地震序列定位后,其后方位角和慢度残差的标准偏差在校正后分别降低了32% 和58% ;和田台阵的分别降低了38% 和71% 。校正后,那曲台阵记录的汶川地震序列中100% 的地震都提高了定位精度;和田台阵记录的所有地震的后方位角精度均得到提高,78% 的地震其慢度精度得到了提高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号