首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   16篇
  国内免费   3篇
地球物理   60篇
地质学   32篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   
2.
Earthquakes taking place from 1975 to 2010 in and around Shandong Province are relocated using double-difference (HypoDD) and Hypoinvers 2000 (Hypo2000) methods, after correction of the onset times of seismic phases. The results show that the relocated seismicity is clearly associated with regional tectonics in space, and is also in agreement with the existence of deep faults imaged by wide-angle and deep seismic reflection profiling ; most of the focal depths are in the range of 5 - 25km, and there are clearly two predominant depths: 10km and 16km, which are inferred to be on the bottom of the upper crust and in the middle crust, respectively. The pattern of seismic activity indicates that moderate and strong earthquakes are likely to occur in the brittle-ductile transition zone between the upper and the lower crust, as the outcome of the deep tectonic dynamic process and the movement and deformation of faults in the upper and shallow crust under the regional stress field.  相似文献   
3.
A set of 41 focal mechanisms (1989–2006) from P-wave first polarities is computed from relocated seismic events in the Giudicarie–Lessini region (Southern Alps). Estimated hypocentral depths vary from 3.1 to 20.8 km, for duration magnitudes (MD) in the range 2.7–5.1. Stress and strain inversions are performed for two seismotectonic zones, namely G (Giudicarie) and L (Lessini). This subdivision is supported by geological evidence, seismicity distribution, and focal mechanism types. The available number of data (16 in G, 22 in L) does not make possible any further subdivisions. Seismotectonic zones G and L are undergoing different kinematic regimes: thrust with strike-slip component in G, and strike-slip in L. Principal stress and strain axes in each sub-region show similar orientations. The direction of maximum horizontal compressive stress is roughly perpendicular to the thrust fronts along the Giudicarie Belt in zone G, and compatible with right-lateral strike-slip reactivation of the faults belonging to the Schio-Vicenza system in zone L. On the whole, kinematic regimes and horizontal stress orientations show a good fit with other stress data from focal mechanisms and breakouts and with geodetic strain rate axes.  相似文献   
4.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

5.
Understanding deep continental structure and the seismotectonics of Deccan trap covered region has attained greater importance in recent years. For imaging the deep crustal structure, magnetotelluric (MT) investigations have been carried out along three long profiles viz. Guhagarh–Sangole (GS), Sangole–Partur (SP), Edlabad–Khandwa (EK) and one short profile along Nanasi–Mokhad (NM). The results of GS, SP and NM profiles show that the traps lie directly over high resistive basement with thin inter-trappean sediments, where large thickness of sediments, of the order of 1.5–2.0 km, has been delineated along EK profile across Narmada–Son–Lineament zone. The basement is intersected by faults/fractures, which are clearly delineated as narrow steep conducting features at a few locations. The conducting features delineated along SP profile are also seen from the results of aeromagnetic anomalies. Towards the southern part of the profile, these features are spatially correlated with Kurduwadi rift proposed earlier from gravity studies. Apart from the Kurduwadi rift extending to deep crustal levels, the present study indicates additional conductive features in the basement. The variation in the resistivity along GS profile can be attributed to crustal block structure in Koyna region. Similar block structure is also seen along NM profile.Deccan trap thickness, based on various geophysical methods, varies gradually from 1.8 km towards west to 0.3 km towards the east. While this is the general trend, a sharp variation in the thickness of trap is observed near Koyna. The resistivity of the trap is more (150–200 Ω m) towards the west as compared to the east (50–60 Ω m) indicating more compact or denser nature for the basalt towards west. The upper crust is highly resistive (5000–10,000 Ω m), and the lower crust is moderately resistive (500–1000 Ω m). In the present study, seismotectonics of the region is discussed based on the regional geoelectrical structure with lateral variation in the resistivity of the basement and presence of anomalous conductors in the crust.  相似文献   
6.
The tectonic characteristics and research problems of five earthquakes with M≥7.0 on the North China Plain over the last 300 years are addressed in the paper, including the cognition that there were no ground fractures in the 1966 Xingtai earthquake, the question caused by the thrust activity of the seismic fault of the Tangshan Earthquake and the discussion of the seismotectonic environment of the 1830 Cixian earthquake and the 1937 Heze earthquake. The author thinks that the main reason for the problems in research of strong earthquake tectonics in the region is that the status of activity of the main tectonics during the Late Quaternary are unknown. This affects the founding of discrimination criteria for seismotectonics of strong earthquakes on the North China Plain. Discriminating the Holocene active faults from the large number of faults is the most effective method for seismic hazard assessment in the area in future.  相似文献   
7.
A new view of Italian seismicity using 20 years of instrumental recordings   总被引:9,自引:0,他引:9  
In this paper, we show the seismicity of the past 20 years that occurred in Italy and surrounding regions. Hypocentral locations have been obtained by using P- and S-wave arrival times from the INGV national and several regional permanent seismic networks. More than 48,000 events, selected from an original data set of about 99,780, are used to reconstruct the most complete seismic picture of the Italian region so far. The seismicity distribution allows inference on seismotectonics of this complex region of subduction versus continental collision. Our results clearly reveal the geometry of the Adria and the Ionian subduction and a continuous normal fault belt in the upper crust, following the Apennines mountain range. The depth of the seismogenic layer is computed from the cut-off of seismicity at depth and shows large variations along and across the seismic active regions. Earthquakes are generated by the different velocity of slab retreat and the subsequent asthenospheric upwelling.  相似文献   
8.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   
9.
Reena De  J.R. Kayal   《Tectonophysics》2004,386(3-4):243-248
A microearthquake survey in the Sikkim Himalaya raised a question whether the north–south segment of the Main Central Thrust (MCT) in this part of the Himalaya is seismically active(?). Fault-plane solution of a cluster of events occurred below this segment of the MCT shows right-lateral strike-slip motion. The seismic observations and the geological evidences suggest that a NNE–SSW trending strike-slip fault, beneath this segment, caused right lateral movement on the MCT, and is seismically active.  相似文献   
10.
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号