首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   7篇
  国内免费   2篇
地球物理   41篇
地质学   2篇
海洋学   4篇
综合类   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有49条查询结果,搜索用时 62 毫秒
1.
The seismic performance of tuned mass dampers (TMDs) on structures undergoing inelastic deformations may largely depend on the ground motion intensity. By estimating the impact of each seismic intensity on the overall cost of future seismic damages, lifecycle cost (LCC) proves a rational metric for evaluating the benefits of TMDs on inelastic structures. However, no incorporation of this metric into an optimization framework is reported yet. This paper presents a methodology for the LCC‐optimal design of TMDs on inelastic structures, which minimizes the total seismic LCC of the combined building‐TMD system. Its distinctive features are the assumption of a mass‐proportional TMD cost model, the adoption of an iterative suboptimization procedure, and the initialization of the TMD frequency and damping ratios according to a conventional linear TMD design technique. The methodology is applied to the seismic improvement of the SAC‐LA benchmark buildings, taken as representative of standard steel moment‐resisting frame office buildings in LA, California. Results show that, despite their limited performance at the highest intensity levels, LCC‐optimal TMDs considerably reduce the total LCC, to an extent that depends on both the building vulnerability and the TMD unit cost. They systematically present large mass ratios (around 10%) and frequency and damping ratios close to their respective linearly designed optima. Simulations reveal the effectiveness of the proposed design methodology and the importance of adopting a nonlinear model to correctly evaluate the cost‐effectiveness of TMDs on ordinary structures in highly seismic areas.  相似文献   
2.
The worldwide demand for renewable energy is increasing rapidly. Wind energy appears as a good solution to copy with the energy shortage situation. In recent years, offshore wind energy has become an attractive option due to the increasing development of the multitudinous offshore wind turbines. Because of the unstable vibration for the barge-type offshore wind turbine in various maritime conditions, an ameliorative method incorporating a tuned mass damper (TMD) in offshore wind turbine platform is proposed to demonstrate the improvement of the structural dynamic performance in this investigation. The Lagrange's equations are applied to establish a limited degree-of-freedom (DOF) mathematical model for the barge-type offshore wind turbine. The objective function is defined as the suppression rate of the standard deviation for the tower top deflection due to the fact that the tower top deflection is essential to the tower bottom fatigue loads, then frequency tuning method and genetic algorithm (GA) are employed respectively to obtain the globally optimum TMD design parameters using this objective function. Numerical simulations based on FAST have been carried out in typical load cases in order to evaluate the effect of the passive control system. The need to prevent the platform mass increasing obviously has become apparent due to the installation of a heavy TMD in the barge-type platform. In this case, partial ballast is substituted for the equal mass of the tuned mass damper, and then the vibration mitigation is simulated in five typical load cases. The results show that the passive control can improve the dynamic responses of the barge-type wind turbine by placing a TMD in the floating platform. Through replacing partial ballast with a uniform mass of the tuned mass damper, a significant reduction of the dynamic response is also observed in simulation results for the barge-type floating structure.  相似文献   
3.
In this paper, the effects of a mass damper on the rocking motion of a non‐symmetric rigid block‐like structure, subject to different seismic excitation, are investigated. The damper is modelled as a single degree of freedom oscillating mass, running at the top of the block and connected to it by a linear visco‐elastic device. The equations of rocking motion, the uplift and the impact conditions are derived. A nondimensionalisation of the governing equations is performed with the aim to obtain an extensive parametric analysis. The results are achieved by numerical integration of these equations. The slenderness and the base of the rigid block, and the eccentricity of the centre of mass are taken as variable parameters in the analyses. The main objective of the study is to check the performance of the damper versus the spectral characteristics of the seismic input. Three earthquake registrations with different frequency contents are used in the analyses. The results show that the presence of the mass damper leads to different levels of improvement of the response of the system, depending on the spectral characteristics of the seismic input. Curves providing the overturning slenderness of blocks of specific sizes versus the characteristics of the TMD are obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
4.
A variant type of tuned mass damper (TMD) termed as ‘non‐traditional TMD (NTTMD)’ is recently proposed. Mainly focusing on the employment of TMD for seismic response control, especially for base‐isolated or high‐rise structures, this paper aims to derive design formulae of NTTMDs based on two methodologies with different targets. One is the fixed points theory with the performance index set as the maximum magnitude of the frequency response function of the relative displacement of the primary structure with respect to the ground acceleration, and the other is the stability maximization criterion (SMC) to make the free vibration of the primary structure decay in the minimum duration. Such optimally designed NTTMDs are compared with traditional TMDs by conducting both numerical simulations and experiments. The optimum‐designed NTTMDs are demonstrated to be more effective than the optimum‐designed traditional TMDs, with smaller stroke length required. In particular, the effectiveness of the TMDs combined with a base‐isolated structure is investigated by small‐scale model experimental tests subjected to a time scaled long period impulsive excitation, and it is demonstrated that the SMC‐based NTTMD can suppress structural free vibration responses in the minimum duration and requires much smaller accommodation space. Additionally, a small‐scale shaking table experiment on a high‐rise bending model attached with a SMC‐based NTTMD is conducted. This study indicates that NTTMD has a high potential to apply to seismic response control or retrofit of structures such as base‐isolated or central column‐integrated high‐rise structures even if only a limited space is available for accommodating TMDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
This paper investigates the dynamic behavior and the seismic effectiveness of a non‐conventional Tuned Mass Damper (TMD) with large mass ratio. Compared with conventional TMD, the device mass is increased up to be comparable with the mass of the structure to be protected, aiming at a better control performance. In order to avoid the introduction of an excessive additional weight, masses already present on the structure are converted into tuned masses, retaining structural or architectural functions beyond the mere control function. A reduced order model is introduced for design purposes and the optimal design of a large mass ratio TMD for seismic applications is then formulated. The design method is specifically developed to implement High‐Damping Rubber Bearings (HDRB) to connect the device mass to the main structure, taking advantage of combining stiffness and noticeable damping characteristics. Ground acceleration is modeled as a Gaussian random process with white noise power spectral density. A numerical searching technique is used to obtain the optimal design parameter, the frequency ratio alpha, which minimizes the root‐mean‐square displacement response of the main structure. The study finally comprises shaking table tests on a 1:5 scale model under a wide selection of accelerograms, both artificial and natural, to assess the seismic effectiveness of the proposed large mass ratio TMD. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
The problems of ice-induced vibration have been noticed and concerned since the 1960s, but it has not been well resolved. One reason is that the dynamic interaction between ice and structure is so complicated that practical ice force model has not been developed. The recent full-scale tests conducted on jacket platforms in the Bohai Sea presented that ice could cause intense vibrations which endanger the facilities on the deck and make discomfort for the crew. In this paper, the strategy of mitigation of ice-induced offshore structure vibration is discussed. Based on field observations and understanding of the interaction between ice and structure, the absorption mitigation method to suppress ice-induced vibration is presented. The numerical simulations were conducted for a simplified model of platform attached with a Tuned Mass Danlper (TMD) under ice force function and ice force time history. The simulation results show that TMD can fa- vorably reduce ice-induced vibrations, therefore, it can be considered to be an alternative approach to utilize. Finally, the application possibilities of utilizing TMDs on other miniature offshore structures in ice-covered areas of marginal oil fields are discussed.  相似文献   
7.
本文以南京长江第三大桥为例,研制了用于钢塔施工阶段涡激振动响应制振的制振器TMD和TLD。对制振装置以及其所采用的一些关键技术进行了说明。通过振动台试验测试了制振器的动力特性。根据试验结果,对TMD的工作性能,即装置的频率特性、阻尼特性、起动时所需的外激励水平及装置的框架刚度等,进行了评价分析;对TLD实现了其阻尼方案的优化,并确定了其工作时的阻尼隔栅状态。确认了制作完成的制振器具有良好的工作性能。  相似文献   
8.
Seismic structural control using semi-active tuned mass dampers   总被引:8,自引:1,他引:8  
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping. An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action. The damping modification of the SATMD is carried out according to the proposed OTE algorithm, which is formulated based on analysis of the structural movement under external excitations, and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted. The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed. Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.  相似文献   
9.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
10.
结构振动控制的半主动磁流变质量驱动器(MR-AMD)   总被引:14,自引:1,他引:14  
本文首先提出了一种新型的半主动磁流变质量驱动器(MR-AMD),该装置用磁流变驱动器替代AMD的液压驱动系统;其次采用所提出的半主动控制算法仿真分析了MR-AMD用于结构振动控制的有效性;第三,比较了半主动质量驱动器(MR-AMD)、调谐质量阻尼器(TMD)及主动质量驱动器(AMD)对同一模型结构的控制效果。分析结果表明,MR-AMD作为一种半主动质量驱动器有效地降低了结构的反应,其控制效果虽然不如具有相同质量块参数的AMD但却优于TMD,且同AMD一样具有较宽的有效频带范围。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号