首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   21篇
  国内免费   60篇
测绘学   2篇
地球物理   67篇
地质学   266篇
海洋学   21篇
天文学   74篇
自然地理   23篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   3篇
  2015年   5篇
  2014年   25篇
  2013年   24篇
  2012年   16篇
  2011年   22篇
  2010年   20篇
  2009年   33篇
  2008年   31篇
  2007年   23篇
  2006年   27篇
  2005年   34篇
  2004年   23篇
  2003年   24篇
  2002年   28篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1991年   1篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   9篇
  1977年   7篇
排序方式: 共有453条查询结果,搜索用时 31 毫秒
1.
In the northwestern sector of the Zagros foreland basin, axial fluvial systems initially delivered fine-grained sediments from northwestern source regions into a contiguous basin, and later transverse fluvial systems delivered coarse-grained sediments from northeastern sources into a structurally partitioned basin by fold-thrust deformation. Here we integrate sedimentologic, stratigraphic, palaeomagnetic and geochronologic data from the northwestern Zagros foreland basin to define the Neogene history of deposition and sediment routing in response to progressive advance of the Zagros fold-thrust belt. This study constrains the depositional environments, timing of deposition and provenance of nonmarine clastic deposits of the Injana (Upper Fars), Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations in the Kurdistan region of Iraq. Sediments of the Injana Formation (~12.4–7.75 Ma) were transported axially (orogen-parallel) from northwest to southeast by meandering and low-sinuosity channel belt system. In contrast, during deposition of the Mukdadiya Formation (~7.75–5 Ma), sediments were delivered transversely (orogen-perpendicular) from northeast to southwest by braided and low-sinuosity channel belt system in distributive fluvial megafans. By ~5 Ma, the northwestern Zagros foreland basin became partitioned by growth of the Mountain Front Flexure and considerable gravel was introduced in localized alluvial fans derived from growing topographic highs. Foredeep accumulation rates during deposition of the Injana, Mukdadiya and Bai-Hasan Formations averaged 350, 400 and 600 m/Myr respectively, suggesting accelerated accommodation generation in a rapidly subsiding basin governed by flexural subsidence. Detrital zircon U-Pb age spectra show that in addition to sources of Mesozoic-Cenozoic cover strata, the Injana Formation was derived chiefly from Palaeozoic-Precambrian (including Carboniferous and latest Neoproterozoic) strata in an axial position to the northwest, likely from the Bitlis-Puturge Massif and broader Eastern Anatolia. In contrast, the Mukdadiya and Bai-Hasan Formations yield distinctive Palaeogene U-Pb age peaks, particularly in the southeastern sector of the study region, consistent with transverse delivery from the arc-related terranes of the Walash and Naopurdan volcano-sedimentary groups (Gaveh-Rud domain?) and Urumieh-Dokhtar magmatic arc to the northeast. These temporal and spatial variations in stratigraphic framework, depositional environments, sediment routing and compositional provenance reveal a major drainage reorganization during Neogene shortening in the Zagros fold-thrust belt. Whereas axial fluvial systems initially dominated the foreland basin during early orogenesis in the Kurdistan region of Iraq, transverse fluvial systems were subsequently established and delivered major sediment volumes to the foreland as a consequence of the abrupt deformation advance and associated topographic growth in the Zagros.  相似文献   
2.
We constrain the multistage tectonic evolution of the Palaeoproterozoic UHT metamorphic(P=0.9–1.0 GPa,T>1000℃,t=2088–2031 Ma)Bakhuis Granulite Belt(BGB)in Surinam on the Guiana Shield,using large-to small-scale structures,Al-in-hornblende thermobarometry and published fluid inclusion and zircon geochronological data.The BGB forms a narrow,NE–SW striking belt between two formerly connected,~E–W oriented granite-greenstone belts,formed between converging Amazonian and West African continental masses prior to collision and Transamazonian orogeny.Inherited detrital zircon in BGB metasediments conforms agewise to Birimian zircon of West Africa and suggests derivation from the subsequently subducted African passive margin.Ultrahigh-temperature metamorphism may have followed slab break-off and asthenospheric heat advection.Peak metamorphic structures result from layer-parallel shearing and folding,reflecting initial transtensional exhumation of the subducted African margin after slab break-off.A second HT event involves intrusion,at ca.0.49 GPa,of charnockites and metagabbros at 1993–1984 Ma and a layered anorthosite at 1980 Ma,after the BGB had already cooled to<400℃.The event is related to northward subduction under the greenstone belts,along a new active margin to their south.A pronounced syntaxial bend in the new margin points northward towards the BGB and is likely the result of indentation by an anticlinorial flexural bulge of the subducting plate.Tearing of the subducting oceanic plate along this bulge explains why the charnockites are restricted to the BGB.The BGB subsequently experienced doming under an extensional detachment exposed in its southwestern border zone.Exhumation was focused in the BGB as a result of the flexural bulge in the subducting plate and localised heating of the overriding plate by charnockite magmatism.The present,straight NE–SW long-side boundaries of the BGB are superimposed mylonite zones,overprinted by pseudotachylites,previously dated at ca.1200 Ma and 950 Ma,respectively.The 1200 Ma mylonites reflect transpressional popping-up of the BGB,caused by EW-directed intraplate principal compressive stresses from Grenvillian collision preserved under the eastern Andes.Further exhumation of the BGB involved the 950 Ma pseudotachylite decorated faulting,and Phanerozoic faulting along reactivated Meso-and Neoproterozoic lineaments.  相似文献   
3.
徐宿地区构造特征及其演化   总被引:2,自引:0,他引:2       下载免费PDF全文
王陆超  汪吉林  李磊 《江苏地质》2011,35(3):247-250
研究区位于苏、鲁、豫、皖交界中心,大地构造隶属于华北板块东南缘,是华北地区主要赋煤地带,自石炭—二叠纪以来,该区经受了多次构造活动,构造演化与华北板块南缘和东缘的2条板缘构造活动带密切相关。通过在研究区进行野外实际调查并结合区域地质资料的基础上,对研究区地质构造特征及其演化进行了讨论,并探讨了研究区构造对煤田的控制作用。  相似文献   
4.
This work examines the longitudinal profiles of 27 rivers in the upper Cher basin, of various lengths, in order to characterize their shape and the knickzones (high gradient sections) that disrupt their longitudinal profiles. No smooth, concave-upwards long profile has been found in the study area, located at the contact between the Massif Central basement rocks and the Paris Basin sedimentary rocks, because of the heterogeneous geological structure and lithology. The analysis of the main knickzone parameters allows us to distinguish two knickzone assemblages: the 53 knickzones of the first have a lithological origin and are characterized by a gradient equal to or lower than that given by the power curve y = 63.306 × −0.4392; the 30 knickzones of the second assemblage, which have a higher gradient than that of the curve, and give clear outliers in the DS (distance-slope) plot, are due to active faulting. The locations of this second group of knickzones delimit the areas that have experienced important local vertical crustal motions, too rapid for fluvial incision to have reduced the effect of knickzones caused by active faulting. In these uplifted areas, headward erosion has been arrested by knickzones of the second type, allowing the preservation of shallow-dell valley heads without any incision.  相似文献   
5.
威德尔海的重磁场特征及其构造意义   总被引:1,自引:1,他引:0  
威德尔海是南极洲最大的边缘海。通过搜集威德尔海的重磁资料、历史文献以及总结前人的相关研究成果,介绍了威德尔海的重磁场基本特征以及指示的构造意义。威德尔海最显著的重力特征是在威德尔海的中北部分布着以鲱骨式结构展布的一系列NW-SE向重力异常,其上可见一系列弧形、上凹的以E-W为主要方向的磁力异常。沿南极半岛陆架边缘的重力高一直可延伸到南侧海域,高值区与陆架平行,但是在磁异常上反映不明显。威德尔海原始海盆的形成约在150 Ma,并伴随南北向张裂,随后在140 Ma发生东西向扩张,到约120 Ma异常形成现代南极洲、非洲和南美洲板块的分布格局,鲱骨式结构异常脊也形成于该时期。  相似文献   
6.
The Central Trough of the North Sea is not a simple rift graben. It is an elongated area of regional subsidence which was initiated in mid Cretaceous times and continued to subside through to the late Tertiary. Its form is not representative of pre-mid Cretaceous tectonics.In Late Permian times the North Sea was divided into a northern and southern Zechstein basin by the E-W trending Mid North Sea-Ringkøbing-Fyn High. The latter was dissected by a narrow graben trending NNW through the Tail End Graben and the Søgne Basin. The Feda Graben was a minor basin on the northern flank of the Mid North Sea High at this time. This structural configuration persisted until end Middle Jurassic times when a new WNW trend separated the Tail End Graben from the Søgne Basin. Right lateral wrench movement on this new trend caused excessive subsudence in the Tail End and Feda Grabens while the Søgne Basin became inactive.Upper Jurassic subsidence trends continued during the Early Cretaceous causing the deposition of large thicknesses of sediments in local areas along the trend. From mid Cretaceous times the regional subsidence of the Central Trough was dominant but significant structural inversions occurred in those areas of maximum Early Cretaceous and Late Jurassic subsidence.  相似文献   
7.
The surface geology of central England and Belgium obscures a large ‘basement’ massif with a complex history and stronger crust and lithosphere than surrounding regions. The nucleus was forged by subduction-related magmatism at the Gondwana margin in Ediacaran time. Partitioning into a platform, in the English Midlands, and a basin stretching to Belgium, in the east, was already evident in Cambrian/earliest Ordovician time. The accretion of the Monian Composite Terrane during the Penobscotian deformation phase preceded late Tremadocian rifting, and Floian separation, of the Avalonia Terrane from the Gondwana margin. Late Ordovician magmatism in a belt from the Lake District to Belgium records subduction beneath Avalonia of part of the Tornquist Sea. This ‘Western Pacific-style’ oceanic basin closed in latest Ordovician time, uniting Avalonia and Baltica. Closure of the Iapetus Ocean in early Silurian time was soon followed by closure of the Rheic Ocean, recorded by subduction along the southern margin of the massif. The causes of late Caledonian deformation are poorly understood and controversial. Partitioned behaviour of the massif persisted into late Palaeozoic time. Late Devonian and Carboniferous sequences show strong onlap onto the massif, which was little affected by crustal extension. Compressional deformation during the Variscan Orogeny also appears slight, and was focussed in the west where a wedge-shaped mountain foreland uplift was driven by orogenic indentation, splitting the massif from the Welsh Massif along the reactivated Malvern Line. Permian to Mesozoic sequences exhibit persistent but variable degrees of onlap onto the massif.  相似文献   
8.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   
9.
10.
Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km−1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km−1) and moderate strain rates (10−13 s−1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼10% growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km−1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号