首页 | 本学科首页   官方微博 | 高级检索  
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   4篇
  地球物理   7篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 265 毫秒
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应。莫勒切河出山口发育4级阶地(T4,T3,T2,T1),其中T4、T3为宽谷阶地,T2为堆积阶地,T1为堆积-切割阶地。T3,T2,T1阶地形成年龄为分别为 (18.98±1.42)ka BP、(13.08±1.01)ka BP、(5.72±0.43)ka BP,3级阶地分别形成于冰盛期末期、新仙女木时期以及5ka BP左右的变冷变干气候环境。T3揭示自 (18.98±1.42)ka BP至今莫勒切河出山口的平均抬升速率为 (6.66±0.50)mm/a。T3、T2阶地的存在揭示 (18.98±1.42)ka BP至 (13.08±1.01)ka BP之间,研究区及其邻近地区存在一轮快速的构造抬升和快速加积事件,抬升速率>20mm/a,加积速率>10mm/a。构造抬升形式为从南向北的跨阿尔金断裂带的掀斜式抬升,是高原向北扩展的一种运动形式。T2阶地的堆积应该是此次快速构造抬升和15ka BP至12ka BP之间冰消气候共同作用的产物。  相似文献
Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, five levels of terraces, namely T1~T5 have developed in these gullies. The heights of terraces T1, T2, T3, T4 and T5 are about 3m, 8~10m, about 20m, about 30m and 40~50m, respectively. The dating data of the terraces and investigation of the faulted landforms show that the Luoyunshan fault zone has experienced much activity since the Late Quaternary. The uplift rate of the terraces was 0.41mm/a since the Middle-Late Pleistocene, and 0.75mm/a since the Holocene. The increasing trend of uplift rate of the terraces along the Luoyunshan fault zone from the Middle-Late Pleistocene to Holocene indicates the tendency of gradual tectonic uplift of the fault zone since the late Quaternary. This is in good agreement with the increasing trend of subsidence rate of the Linfen basin from the Late Pleistocene to Holocene.  相似文献
库木库里盆地位于青藏高原北缘,与柴达木盆地一山之隔,是二者的过渡地带,也是高原主体部分向NE扩展的前缘地区;现今构造表现为被3条大型活动构造带(走滑的阿尔金断裂带、东昆仑断裂带和逆冲的祁漫塔格褶皱逆冲系)所夹持。因此,该盆地对于研究青藏高原北缘的构造活动性、活动历史,探讨高原的扩展模式具有十分重要的意义。虽然库木库里盆地南、北两侧均发育活动性很强的大型走滑断裂,但是在盆地中央发育1条大型背斜,走向NWW-SEE,与祁漫塔格褶皱逆冲系和柴达木盆地内的褶皱构造走向一致,说明盆地目前遭受NNE向的挤压。通过对盆地地形横、纵剖面和阶地展布形态的分析,得出背斜有自西向东扩展变形的特征;野外调查和测年结果显示,背斜东段冰川融水形成了大型冰水扇,形成年龄为(87.09±2.31)~(102.4±3.7)ka,进而获得背斜东段自晚更新世以来平均隆升速率的最大值为(2.78±0.28)~(3.28±0.28)mm/a。库木库里盆地整体的活动性很强,在构造上与其北边的柴达木盆地类似,都受控于阿尔金断裂南侧的NNE向的区域挤压作用。  相似文献
黄河中上游河段是横贯整个“柴达木 -祁连山活动地块”的贯流水系。通过对青海共和至宁夏石嘴山段长约 180 0km的黄河中上游阶地的系统考察、阶地剖面实测和年代测定 ,绘制了该河段的阶地纵剖面图。综合分析各段的阶地级数、高度、年代及变形特征得到以下认识 :该流域可划分为若干个次级活动地块 ,表现在不同地块之间的阶地抬升幅度和速率存在较大差别 ;活动地块内部在较大程度上具刚性特征 ,表现在块体内部阶地级数、高度和形成年代基本相当 ;阶地纵剖面反映的本区活动地块自 1.6MaB .P .以来的抬升量大于 3.6~ 1.6MaB .P .的抬升量 ;柴达木 -祁连山活动地块距今 1万年以来和 15~ 2 0万年间存在 2次强烈的构造抬升运动  相似文献
The seismic activity of the Guardamar-Torrevieja zone (Eastern Betic Cordillera, SE Spain) can be associated with the Bajo Segura fault zone, an E-W reverse blind fault with secondary NW-SE dextral faults. A high-precision levelling profile 30 kilometers long was set up and levelled in 1997 to monitor the vertical displacement of this active fault zone. This profile runs parallel to an older high-precision levelling line included in the Spanish first order levelling network measured by the Instituto Geográfico Nacional (IGN) in two different campaigns (1934 and 1976). The 1997 line was relevelled in 2003 and 10 new benchmarks were set up, both to increase benchmark density and to restore some of the 1997 benchmarks that had been destroyed. We have used the 1976 IGN and the 2003 measurement to construct a recent vertical movements profile with a significant time difference (27 years). This recent vertical movements profile shows that the vertical movements are very small, nearly equal to the error bars, with a 0.2 mm/year rise in the town of Guardamar, and a 0.2 mm/year subsidence of the southern part of the profile (Punta Prima) respect to the town of Torrevieja. These movements could be related to the activity of the Bajo Segura and the San Miguel faults respectively. Using geological markers we have deduced uplift rates of 0.1 mm/year during the last 3 million years. Therefore, these preliminary results indicate that geodetically (short-term deformation) determined uplift rates are similar to those estimated from geological markers (long term deformation).  相似文献
The Niyasar plutonic complex, one of the Cenozoic magmatic assemblages in the Urumieh‐Dokhtar magmatic belt, was the subject of detailed petrographic and mineralogical investigations. The Niyasar magmatic complex is composed of Eocene to Oligocene mafic rocks and Miocene granitoids. Eleven samples, representing the major rock units in the Niyasar magmatic complex and contact aureole were chosen for mineral chemical studies and for estimation of the pressure, temperature, and oxygen fugacity conditions of mineral crystallization during emplacement of various magmatic bodies. The analyzed samples are composed of varying proportions of quartz, plagioclase, K‐feldspar, hornblende, biotite, titanite, magnetite, apatite, zircon, garnet, and clinopyroxene. Application of the Al‐in‐hornblende barometer indicates pressures of around 0.2 to 0.4 kbar for the Eocene–Oligocene mafic bodies and around 0.5 to 1.7 kbar for the Miocene granitoids. Hornblende‐plagioclase thermometry yields relatively low temperatures (661–780 °C), which probably reflect late stage re‐equilibration of these minerals. The assemblage titanite–magnetite–quartz as well as hornblende composition were used to constrain the oxygen fugacity and H2O content during the crystallization of the parent magmas in the Miocene plutons. The results show that the Miocene granitoids crystallized from magmas with relatively high oxygen fugacity and high H2O content (~5 wt% H2O). The Miocene granitoids show similar range of oxygen fugacity, H2O contents and mineral chemical compositions, which indicate a common source for their magmas. Although the crystallization pressures of the Miocene plutons discriminate various categories of plutonic bodies emplaced at depths of about 5.7–6.5 km (Marfioun pluton), about 4.2 km (Ghalhar pluton) and 1.9–2.3 km (Poudalg pluton), they were later uplifted to the same level by vertical displacement of faults. The emplacement depths of the Niyasar plutons suggest that the central part of the Urumieh‐Dokhtar magmatic belt has experienced an uplift rate of ca. 0.25–0.4 mm/yr from the Miocene onwards.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号