首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  完全免费   14篇
  地球物理   53篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   2篇
  1996年   1篇
  1993年   1篇
排序方式: 共有53条查询结果,搜索用时 46 毫秒
1.
Land use and land cover in China have changed greatly during the past 300 a, indicated by the rapid abrupt decrease of forest land area and the rapid increase of cropland area, which can affect terrestrial carbon cycle greatly. The first-hand materials are used to analyze main characteristics for land use and land cover changes in China during the study period. The following conclusions can be drawn from this study. The cropland area in China kept increasing from 60.78×106 hm2 in 1661 to 96.09×106 hm2 in 1998. Correspondingly, the forest land area decreased from 248.13×106 hm2 in 1700 to 109.01×106 hm2 in 1949. Affected by such changes, the terrestrial ecosystem carbon storage decreased in the mean time. Car-bon lost from land use and land cover changes mainly consist of the loss from vegetation biomass and soil. In the past 300 a, about 3.70 PgC was lost from vegetation biomass, and emissions from soil ranged from 0.80 to 5.84 PgC. The moderate evaluation of soil losses was 2.48 PgC. The total loss from vegetation and soil was between 4.50 and 9.54 PgC. The moderate and optimum evaluation was 6.18 PgC. Such carbon losses distribution varied spatially from region to region. Carbon lost more significantly in Northeast China and Southwest China than in other regions, because losses of forest land in these two regions were far greater than in the other regions during the past 300 a. And losses of carbon in the other regions were also definite, such as Inner Mongolia, the western part of South China, the Xinjiang Uygur Autonomous Region, and the Qinghai-Tibet Plateau. But the carbon lost very little from the traditional agricultural regions in China, such as North China and East China. Studies on the relationship between land use and land cover change and carbon cycle in China show that the land use activities, especially those related to agriculture and forest management, began to affect terrestrial carbon storage positively in recent years.  相似文献
2.
Total DNAs were extracted from different sections of deep sea sediment core sample collected from the Western Pacific "Warm Pool". The bacterial 16S ribosomal DNA (rDNA) clone libraries were constructed and analyzed by PCR-restriction fragment length polymorphism (RFLP) and DNA sequencing. The bacterial communities in these samples and their relationship to environment were analyzed consequently. The results indicated that among eight main bacterial groups found in these sediments, members of the γ-Proteobacteria were most abundant in each section of sediment core sample and the genus Colwellia belonging to γ-Proteobacteria was dominant in this area. Members of the α-Proteobacteria were found commonly existing in these samples, while members belonging to β-Proteobacteria were seldom detected. The diversity of bacterial communities from different sections of sediment core sample was δ- and ε-Proteo-bacteria and the bacterial group including genera Cytopahga, Flexibacteria and Bacteroides (CFB group)  相似文献
3.
贵州草海湖泊系统碳循环简单模式   总被引:13,自引:2,他引:11       下载免费PDF全文
本文分析了贵州草海湖泊系统中的主要含碳物质-湖水DIC、表层沉积物有机质、水生植物的稳定碳同位素组成,其δ^13C值分别为:-3.70‰至-10.60‰,-20.90‰至-21.60%,-16.10‰至-17.40,通过质量平衡计算,建立了草海区域碳循环的简单模式,结果表明:对于草海这样一个水生植物茂盛的浅水富氧湖而言,光合一呼吸作用和有机质的降解对整个湖泊体系的稳定碳同位素组成具有决定性的作用。  相似文献
4.
The projected changes in carbon exchange between China terrestrial ecosystem and the atmosphere and vegetation and soil carbon storage during the 21st century were investigated using an atmos-phere-vegetation interaction model (AVIM2). The results show that in the coming 100 a, for SRES B2 scenario and constant atmospheric CO2 concentration, the net primary productivity (NPP) of terrestrial ecosystem in China will be decreased slowly, and vegetation and soil carbon storage as well as net ecosystem productivity (NEP) will also be decreased. The carbon sink for China terrestrial ecosystem in the beginning of the 20th century will become totally a carbon source by the year of 2020, while for B2 scenario and changing atmospheric CO2 concentration, NPP for China will increase continuously from 2.94 GtC·a?1 by the end of the 20th century to 3.99 GtC·a?1 by the end of the 21st century, and vegetation and soil carbon storage will increase to 110.3 GtC. NEP in China will keep rising during the first and middle periods of the 21st century, and reach the peak around 2050s, then will decrease gradually and approach to zero by the end of the 21st century.  相似文献
5.
地球系统中的天然气水合物—天然气体系研究展望   总被引:6,自引:5,他引:1       下载免费PDF全文
虽然目前国外已有很多学者研究了天然气水合物及其分解产生的气体在地球系统各圈层中的循环转化过程,但国内基本上还没有开展相关方面的研究,况且其中的很多问题尚不清楚.本文的目的是通过分析国内外相关的研究进展,提出天然气水合物-天然气体系这个概念,并归纳总结天然气水合物-天然气体系在地球系统各圈层中的循环转化问题,希望能为研究天然气水合物在全球碳循环和气候变化中的作用提供一定的参考.通过分析发现,天然气水合物-天然气体系在地球系统各圈层中的循环转化过程是非常复杂的,而各个圈层对于天然气水合物-天然气体系在地球系统中的循环转化过程都十分重要,这个体系可能是影响全球碳循环和气候变化的一个重要组成部分.  相似文献
6.
Terrestrial ecosystems are both a carbon source and sink, therefore play an important role in the global carbon cycle that act as a link of interactions between human activities and climate changes[1,2]. Climate change impacts ecosystem carbon cycle through af- fecting biological processes, e.g. plant photosynthesis, respiration, and soil carbon decomposition. Land-use change directly modifies the distribution and structure of terrestrial ecosystems and hence the carbon storage and fluxes. Usi…  相似文献
7.
Eiichi Tajika 《Island Arc》1999,8(2):293-303
The carbon cycle and climate change during the Cretaceous are reconstructed by using a carbon cycle model, and discussed. The model takes into account the effects of the enhanced magma eruption and organic carbon burial rates, both of which characterize the carbon cycle during the Cretaceous. The result for the CO2 variation is roughly consistent with the pattern of paleoclimate change inferred from the geological record. The CO2 level during the mid-Cretaceous is estimated to be 4–5 times the present atmospheric level, corresponding to a surface temperature of 20–21°C. The warm, equable Cretaceous resulted from the effects of tectonic forcing such as enhanced CO2 degassing, although the enhanced organic carbon burial has a tendency to decrease the CO2 level. The organic carbon burial rate during the Cretaceous is generally larger than those for the Cenozoic, and is characterized by three major peaks (~ 1.5–1.8 times the present-day value) corresponding to the major oceanic anoxic events. In the case for the extensive mantle plume degassing, although the CO2 levels are only 10% higher than those for the standard case during 120–100 Ma, the causes for the enhanced CO2 levels would be quite different. If the globally averaged surface temperature had increased due to paleogeographic forcing effects, the greenhouse effect of CO2 (and thus the CO2 level) should be lower than the values estimated for the standard case. If the CO2 levels are similar to, but the surface temperature is higher than, those for the standard case, either the parameter β (an influence of the Himalayas–Tibetan Plateau on the global weathering today) may be unreasonably large or the dependence of the silicate weathering rate on the CO2 partial pressure and the surface temperature should be much weaker than those previously proposed.  相似文献
8.
天然气水合物体系动态演化研究(I):地质历史演变   总被引:2,自引:2,他引:0  
1995年Dickens对55.5Ma前古新世末增温事件进行了研究,提出天然气水合物作为全球环境变化重要因子的假说.认为古新世末增温事件溶解无机碳-2~-3‰的^13δC位移可以用水合物所含甲烷的释放与随后氧化成二氧化碳来解释.此后,地质历史演变中的天然气水合物演化研究蓬勃发展,本文总结古新世末增温事件、新元古代末期雪球事件、第四纪千年尺度事件等最新进展,为天然气水合物动态演化研究提供基础.开展天然气水合物-天然气体系动态演化过程数值模拟与特征分析,可望促进天然气水合物在全球变化与碳循环中作用的深入认识.  相似文献
9.
The alpine tundra on Changbai Mountain was formed as a left-over ‘island’ in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.  相似文献
10.
As the third largest country in the world, China has highly variable environmental condition and ecological pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981–2000. Supported by the Ministry of Science and Technology of China (G2002CB412507), the Major Program of the National Natural Science Foundation of China (Grant No.30590384), the “Hundred Talent” Program of the Chinese Academy of Sciences, and K C WONE Education Foundation  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号