首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  地球物理   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In seismic data processing, picking of the P-wave first arrivals takes up plenty of time and labor, and its accuracy plays a key role in imaging seismic structures. Based on the convolution neural network (CNN), we propose a new method to pick up the P-wave first arrivals automatically. Emitted from MINI28 vibroseis in the Jingdezhen seismic experiment, the vertical component of seismic waveforms recorded by EPS 32-bit portable seismometers are used for manually picking up the first arrivals (a total of 7242). Based on these arrivals, we establish the training and testing sets, including 25,290 event samples and 710,616 noise samples (length of each sample:2s). After 3,000 steps of training, we obtain a convergent CNN model, which can automatically classify seismic events and noise samples with high accuracy (> 99%). With the trained CNN model, we scan continuous seismic records and take the maximum output (probability of a seismic event) as the P-wave first arrival time. Compared with STA/LTA (short time average/long time average), our method shows higher precision and stronger anti-noise ability, especially with the low SNR seismic data. This CNN method is of great significance for promoting the intellectualization of seismic data processing, improving the resolution of seismic imaging, and promoting the joint inversion of active and passive sources.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号