首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3001篇
  免费   965篇
  国内免费   678篇
测绘学   143篇
大气科学   995篇
地球物理   955篇
地质学   1620篇
海洋学   215篇
天文学   25篇
综合类   162篇
自然地理   529篇
  2024年   6篇
  2023年   44篇
  2022年   81篇
  2021年   125篇
  2020年   159篇
  2019年   152篇
  2018年   120篇
  2017年   141篇
  2016年   161篇
  2015年   156篇
  2014年   185篇
  2013年   288篇
  2012年   190篇
  2011年   185篇
  2010年   137篇
  2009年   181篇
  2008年   185篇
  2007年   255篇
  2006年   230篇
  2005年   200篇
  2004年   200篇
  2003年   191篇
  2002年   142篇
  2001年   140篇
  2000年   131篇
  1999年   114篇
  1998年   104篇
  1997年   86篇
  1996年   84篇
  1995年   55篇
  1994年   59篇
  1993年   53篇
  1992年   31篇
  1991年   16篇
  1990年   24篇
  1989年   11篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有4644条查询结果,搜索用时 15 毫秒
1.
地震定位对速度模型的依赖性很强.四川地区地形复杂,常规工作中可选取多种速度模型进行定位.川西龙门山断裂带为东南部四川盆地和西北部青藏高原东部山区的明显分界线,近年在此断裂带上发生多次较大地震.对发生在该断裂带附近的6个爆破事件和15个天然地震重新定位,并对比结果.研究表明,相同台站包围情况下,川滇3D速度模型稳定性最好,但对浅表爆破不太准确.相比HypoSat(一维速度模型)组合,台站分布对Hypo2000(一维速度模型)和Hypo2000(赵珠速度模型)组合的定位结果影响较大.  相似文献   
2.
黄河干流内蒙古段河道冬季流凌封河期, 河道水量除一部分转化为冰量外, 很大一部分转化为槽蓄水量而贮存在河道中, 导致下游头道拐河段出现小流量过程, 上游河道流量转化为槽蓄水量和贮存的冰量越大, 小流量持续时间越长, 开河期发生凌汛洪水风险越高。通过对1998 - 2016年头道拐站凌讯期流量变化过程分析, 重新界定了小流量上限阈值为330 m3·s-1, 并且以此值为标准进行小流量过程研究, 分别采用R/S极差分析法、 Fourier变换分析法对近年来小流量过程变化特征进行分析; 结合非线性概率Logit模型和Probit模型对小流量过程的影响因素进行讨论。结果表明: 小流量持续天数变化呈现缩短趋势; 同时, 小流量过程与上游相对来水之间变化关系显著且过程同步, 而滞后于河道槽蓄水量变化过程; 通过Logit模型和Probit模型分析各影响因素变化时相应小流量持续时间变化的响应概率大小, 明确河道冰流量是小流量过程第一影响因素, 气温条件是小流量过程的决定因素, 首封位置和相对来水量是小流量过程重要影响因素。  相似文献   
3.
洪水影响预报和风险预警理念与业务实践   总被引:2,自引:0,他引:2       下载免费PDF全文
刘志雨 《水文》2020,40(1):1-6
我国是世界上洪涝灾害频繁而严重的国家之一,洪水预报预警是防汛减灾工作中重要的非工程措施和洪水防御工作的耳目和参谋。从水文行业的视角,回顾了近年来我国洪水预报预警技术与业务进展,分析了当前洪水预报预警工作面临的新形势和新要求,对比国内外同类行业发展查找了存在的差距,阐述了洪水影响预报和风险预警的定义和理念,从顶层对基于影响预报和风险预警的新一代洪水预报预警系统("国家洪水预报预警系统")总体框架进行了研究和设计,一些关键技术成果在大范围洪水早期预警业务实践中得到了探索应用,取得了较好的效果。  相似文献   
4.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
5.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
6.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   
7.
Better understanding of which processes generate floods in a catchment can improve flood frequency analysis and potentially climate change impacts assessment. However, current flood classification methods are either not transferable across locations or do not provide event-based information. We therefore developed a location-independent, event-based flood classification methodology that is applicable in different climates and returns a classification of all flood events, including extreme ones. We use precipitation time series and very simply modelled soil moisture and snowmelt as inputs for a decision tree. A total of 113,635 events in 4155 catchments worldwide were classified into one of five hydro-climatological flood generating processes: short rain, long rain, excess rainfall, snowmelt and a combination of rain and snow. The new classification was tested for its robustness and evaluated with available information; these two tests are often lacking in current flood classification approaches. According to the evaluation, the classification is mostly successful and indicates excess rainfall as the most common dominant process. However, the dominant process is not very informative in most catchments, as there is a high at-site variability in flood generating processes. This is particularly relevant for the estimation of extreme floods which diverge from their usual flood generation pattern, especially in the United Kingdom, Northern France, Southeastern United States, and India.  相似文献   
8.
On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.  相似文献   
9.
《Sedimentology》2018,65(6):2055-2087
This study, conducted in the Catalan Coastal Ranges, north‐east Spain, describes the Upper Devonian Kellwasser event in a shallowing‐upward sequence of black shales, siltstones and quartz arenites. This sequence was deposited in a progradational and regressive coastal system where the sedimentary environment evolved from the inner shelf to a lagoonal pond located landward of the shoreline. Three anomalous succeeding steps have been identified by geochemical analysis. The first one, detected on the inner shelf, was characterized by oxygen depletion and high organic productivity. The second, detected in the nearshore, was caused by hydrothermal activity occurring under normal oxic conditions. The third and most intense step was identified in the muds of the lagoonal pond and has been linked to strong anoxic conditions, elevated clastic input derived from changes in the weathering regime at the source area and moderate hydrothermal activity. The Kellwasser event is thus defined in the study area as stepwise and multi‐causal. This is the first time that the Kellwasser event has been identified in a sedimentary environment behind the shoreline. It is also the first time that it has been reported in the Catalan Coastal Ranges.  相似文献   
10.
郭铁龙  高原 《地球物理学报》2020,63(3):1085-1103
青藏高原整体隆升,构造运动与介质变形强烈,然而由于地震观测数据不足,青藏高原内部上地壳各向异性研究一直是一个空白.本研究使用西藏地区的地震台网(2009年5月—2017年5月)的观测资料,利用剪切波分裂研究青藏高原上地壳地震各向异性特征.由于青藏高原固定地震台站分布稀疏,可用于进行剪切波分裂研究的近场地震事件记录稀少,本研究采用地震事件的单台定位技术,对公开的地震目录里没有震源深度数据的地震事件进行震源位置约束,并引入微震模板匹配定位方法,对连续地震波形进行检索,识别出地震目录里遗漏的新的微震(小地震)事件波形.微震识别获得的新地震事件记录是地震目录里报告的地震事件记录的大约6倍,用于补充研究区的剪切波分裂数据分析.通过数据分析,对比快波偏振方向,证实微震识别获得的数据极大地增加了有效数据的数量,提高了结果的可靠性.研究结果表明,雅鲁藏布江缝合带与班公—怒江缝合带之间的拉萨地块东部地区,台站的快剪切波(快波)偏振方向主要受区域应力场影响,快波偏振方向主要是NS或NNE方向,表明了区域最大主压应力方向;但个别地震台站(当雄台)快波偏振方向受原地主压应力影响,其快波偏振方向既不平行于断裂走向也不平行于区域主压应力方向,揭示出地壳介质的局部变形导致的局部应力方向不同于青藏块体里的其他地区.研究区西部的改则、普兰和研究区北部的双湖,快波偏振方向显示与断裂等构造走向一致的特点.研究区东部的昌都和察隅,快波偏振方向除了与断裂走向(或构造线)一致,还与地表运动的方向相同,揭示了青藏块体东部的深部物质可能的运移方向.这个现象虽然还需更多的研究证实,但这个发现的重要启示是,地震各向异性结合地表变形可用于探讨地壳深部物质的运动.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号