首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4359篇
  免费   1235篇
  国内免费   1193篇
测绘学   106篇
大气科学   2150篇
地球物理   654篇
地质学   2179篇
海洋学   811篇
天文学   16篇
综合类   286篇
自然地理   585篇
  2024年   11篇
  2023年   89篇
  2022年   190篇
  2021年   212篇
  2020年   181篇
  2019年   198篇
  2018年   190篇
  2017年   161篇
  2016年   177篇
  2015年   182篇
  2014年   307篇
  2013年   319篇
  2012年   303篇
  2011年   350篇
  2010年   291篇
  2009年   320篇
  2008年   388篇
  2007年   396篇
  2006年   424篇
  2005年   339篇
  2004年   289篇
  2003年   251篇
  2002年   178篇
  2001年   168篇
  2000年   131篇
  1999年   132篇
  1998年   125篇
  1997年   97篇
  1996年   81篇
  1995年   57篇
  1994年   46篇
  1993年   37篇
  1992年   37篇
  1991年   23篇
  1990年   15篇
  1989年   15篇
  1988年   18篇
  1987年   7篇
  1986年   1篇
  1985年   8篇
  1984年   10篇
  1983年   9篇
  1982年   13篇
  1981年   8篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有6787条查询结果,搜索用时 15 毫秒
1.
梁文栋  胡修棉 《地质学报》2023,97(9):2975-2991
现代河流沉积物忠实地记录了流域盆地内的母岩、风化、搬运和沉积过程中的化学、物理过程以及人类活动的改造作用,是探索和验证源- 汇系统等理论的重要媒介。本文以全球现代河流砂组分数据库为基础,总结了碎屑组分、重矿物组分在不同大陆的分布特征,探讨了其在物源识别、源区贡献率计算、沉积物产生及搬运过程中气候- 构造等影响因素的评估、对源- 汇系统的研究启示等方面的应用。今后建议加强基于大数据的沉积物组分对气候- 构造- 人类活动的响应、沉积物产生及通量、高时间分辨率的沉积物组分变异性、不同物源定量化方法的差异等方面的研究。  相似文献   
2.
为了解垃圾填埋场周边地下水环境污染状况,以长沙市固体废弃物处理场周边土壤、地下水及下游水库水质为研究对象,对研究区进行采样分析,采用单因子污染指数法和内梅罗污染综合指数法对该垃圾填埋场周边环境重金属含量特征进行分析与风险评价。结果表明:As、Cr(Ⅵ)、Ni、Pb、Zn、Cu重金属是填埋场周边环境中的主要污染物,区域采样点及下游水库中重金属含量均值低于地下水质量标准Ⅲ类,填埋场区污染状况良好;Cr(Ⅵ)含量在ZK1与R1样品中均高于地下水质量标准Ⅲ类,是填埋场周边地下水的主要风险污染物;ZK1~ZK4中土壤重金属元素以Pb、Cr(Ⅵ)富集为主,其达中度污染程度,应引起重视。  相似文献   
3.
研究汛期短时强降水特征,对于南方低山丘陵地区山洪灾害的预报具有重要指导意义。以怀化市为研究区域,基于该区域11个国家站和403个区域自动气象站的2012-2017年4-9月期间逐小时降水量以及相对应的NCEP资料,分析了怀化市短时强降水的时空分布特征,得出了产生短时强降水天气系统模型,结果显示:①汛期短时强降水发生频率较高,时间集中,分布不均。主要出现在5~7月,占4~9月的72.9%,其次在8~9月;北部频数多,中南部少,西部最少,辰溪、麻阳和怀化三县交界处及沅陵县的大合坪附近是频发区域。②短时强降水日变化呈单峰型,4~10时最容易发生,峰值在8时,谷值在23时。③强度越强出现的频次越少;北部的强度和次数大于其它区域;50~79.9 mm/h,占总站数的68.4%;各月国家站的极值乘以2约等于区域站极值。④低涡型短时强降水出现概率最高,低涡位置和移动路径是短时强降水预报的关键点。  相似文献   
4.
风廓线雷达在重污染天气与逆温层关系研究中的应用   总被引:1,自引:0,他引:1  
本文利用气象要素地面观测和环境空气质量监测数据,结合对流层风廓线雷达探测资料,深入研究了2013—2019年发生在青岛地区的65个重污染天气的逆温层变化特征及其与重污染天气的关系。结果表明:(1)青岛地区的重污染天气主要发生在12月至次年1月,重污染发生当日的空气质量指数(Air quality iudex AQI)有“双峰”结构的日变化特征;(2)逆温层早于重污染天气出现,当逆温层高度降低且强度增强,或逆温层高度维持较低、强度维持较强而厚度增厚时,重污染持续或加强;当逆温层高度升高、强度减弱或厚度变薄时,重污染减弱或消散;(3)根据热成风原理,利用风廓线雷达资料可以提前3~7 h预测当地重污染天气的发生,从根本上弥补了常规探空资料低时间分辨率的不足。本文首次将风廓线雷达资料用于分析逆温层变化,而不是平流输送作用,这不仅增加了一个判断影响AQI变化气象条件的新手段,也为今后进一步研究逆温层与重污染天气之间的关系增加了一个有效的新途径,对精准预判某地重污染天气发生的具体时间节点有重要的参考意义和业务应用价值。  相似文献   
5.
运用中尺度WRF模式,分别采用Morrison(MOR)和Milbrandt-Yau(MY)双参数化云微物理方案,对2010年7月20—21日辽宁省的一次强降水过程进行模拟,通过对比分析两个方案所对应的地表累积降水量、降水强度、云中微物理量的模拟结果,评估两个双参数方案对强降水事件的模拟能力及主要微物理过程的差异。结果表明,在对雨带和强降水中心的位置上,MOR方案的模拟能力优于MY方案,但MY方案对强降水中心强度模拟能力则优于MOR方案;两方案对强降水宏观特征的模拟差异在一定程度上体现了它们在微物理具体方案上的差异,相比MY方案而言,MOR方案模拟降水发展期的垂直水汽通量高,使得雪晶的凝华增长、碰连增长增强,从而导致MOR方案的冰晶含量低,雪晶含量高,通过雪晶的凇附作用形成的霰含量也比MY方案高,霰的凇附增长消耗了大量过冷水,使冷云中云滴(过冷水)含量减少; MOR方案模拟得到的600 hPa到地表的雨滴直径均为1 mm,与实际雨滴直径的观测值不符,需要未来进一步开展研究,对原方案进行优化。  相似文献   
6.
“7·20” 华北和北京大暴雨过程的分析   总被引:3,自引:1,他引:2  
赵思雄  孙建华  鲁蓉  傅慎明 《气象》2018,44(3):351-360
本文对2016年7月19—21日华北及北京的特大暴雨作了研究和讨论。研究表明,该次暴雨为诸多有利因素所致:前期副热带高压呈带状稳定维持,中旬末东退,后呈"东高西低"分布,华北处于槽前辐合上升区,有利对流发生。高空西来槽停滞加深(并切断)与低层江淮暖性倒槽叠加,快速发生发展成为一深厚的气旋,出现了高低空系统的耦合。有一支暖(湿)输送带自南向北推进至关重要,源地可追踪至南中国海等低纬度地区,水汽通量辐合大值区先后经长江、黄淮至华北,有明显的中低纬度系统的相互作用。2016年的"7·20"暴雨和2012年"7·21"暴雨均存在明显的多尺度特征,但其具体特征有所不同。前者强烈对流活动稍弱于后者,降水趋势平稳,然而由于其大尺度强迫持续时间长,累积降水量仍然较大。本文主要集中于一些事实的分析,对于该次暴雨的机理尚需作进一步研究。  相似文献   
7.
应用2009—2013年6—9月山东全省加密自动站资料、地面和探空观测资料,选出了98次区域性强降水过程。统计分析了产生强降水的天气系统特征,把500 hPa天气系统分为6种类型,850~700 hPa天气系统分为5种类型,地面影响系统分为7种类型。统计分析了强降水过程中及前期24个代表大气热力、水汽和动力特征的物理量,给出了最小值、最大值、平均值和各阈值所占百分率。850 hPa 和700 hPa偏南风达到急流(≥12 m·s-1)强度的分别占56.1%和62.2%。对流有效位能(CAPE)≥300 J·kg-1占72.6%。K指数≥30 ℃占86.7%。沙氏指数SI≤0占75.5%。925 hPaθse≥68 ℃占82.2%,850 hPa θse≥66 ℃占74.8%。GPS/MET水汽监测大气可降水量≥55 mm占81.8%。850 hPa和700 hPa的水汽通量平均值分别为8.0和5.9 g·(cm·hPa·s)-1,水汽通量散度平均值分别为-4.6×10-9和-2.7×10-9 g·(hPa·cm2·s)-1。925 hPa、850 hPa和700 hPa的涡度平均值分别为12.6×10-6、12.3×10-6和9×10-6 s-1,散度平均值分别为-5.5×10-6、-3.1×10-6、-3.4×10-6 s-1。850 hPa、700 hPa和500 hPa的垂直速度平均值分别为-4.5×10-4、-7.4×10-4和-11.1×10-4 hPa·s-1。  相似文献   
8.
This study considered the possibility of using visible and near infrared (VNIR) spectral absorption feature parameters (SAFPs) in predicting the concentration and mapping the distribution of heavy metals in sediments of the Takab area. In total, 60 sediment samples were collected along main streams draining from the mining districts and tailing sites, in order to measure the concentration of As, Co, V, Cu, Cr, Ni, Hg, Ti, Pb and Zn and the reflectance spectra (350–2500 nm). The quantitative relationship between SAFPs (Depth500nm, R610/500nm, R1344/778nm, Area500nm, Depth2200nm, Area2200nm, Asym2200nm) and geochemical data were assessed using stepwise multiple linear regression (SMLR) and enter multiple linear regression (EMLR) methods. The results showed a strong negative correlation between Ni and Cr with Area2200nm, a significant positive correlation between As and Asym2200nm, Ni and Co with Depth2200nm, as well as Co, V and total values with Depth500nm. The EMLR method eventuated in a significant prediction result for Ni, Cr, Co and As concentrations based on spectral parameters, whereas the prediction for Zn, V and total value was relatively weak. The spatial distribution pattern of geochemical data showed that mining activities, along with the natural weathering of base metal occurrences and rock units, has caused high concentrations of heavy metals in sediments of the Sarough River tributaries.  相似文献   
9.
利用常规观测、NCEP FNL、葵花8号卫星、GNSS反演大气可降水量、智能网格实况产品等资料,分析2017年“海棠”台风造成辽宁西部朝阳地区和东南部岫岩县的极端暴雨成因。结果表明:辽宁西部和东南半岛均出现区域性的极端特大暴雨,岫岩县小时雨强更大,最大雨强达到113 mm·h-1,对流性降水特征明显。两个区域暴雨过程均受到热带、副热带、西风带系统共同作用,狭长型“海棠”台风沿着副热带高压西侧逐渐北上,并且与西风带短波槽相互作用,导致辽宁西部出现强降水,随后加强的涡旋系统后侧干冷空气与低空暖湿水汽输送带相互作用,导致岫岩县出现极端暴雨过程。热带台风“奥鹿”对副热带高压南落东退起到阻挡作用。两个区域均具有来自于南海的水汽通道,另外东南半岛也受到了“奥鹿”台风北侧水汽输送的影响。朝阳市和岫岩县大气可降水量值长时间接近65 mm和70 mm,异常指数最高达到3.0和2.5,表明此次暴雨水汽条件的极端性。辽宁西部降水期间动力不稳定更强,辐合层由地面伸展到500 hPa,而东南半岛降水期间上干下湿的水汽分布以及更强的冷暖空气交汇,有利于产生对流性降水。两个区域均受到多个中尺度云团的共同影响,朝阳地区初期降水由中γ尺度辐合线触发,后期台风在北上过程中与高空槽后部的干冷空气相互作用,形成的暖锋云系以及冷锋云系导致朝阳地区出现持续性强降水;加强的涡旋后部干空气侵入到暖湿水汽输送带中,配合岫岩县山区地面辐合线稳定不动,不断有积云触发并且直接影响岫岩县,导致岫岩县产生极端对流性暴雨。  相似文献   
10.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号