首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   44篇
  国内免费   37篇
测绘学   351篇
大气科学   15篇
地球物理   24篇
地质学   86篇
海洋学   55篇
综合类   20篇
自然地理   38篇
  2024年   2篇
  2023年   7篇
  2022年   26篇
  2021年   31篇
  2020年   36篇
  2019年   28篇
  2018年   28篇
  2017年   26篇
  2016年   36篇
  2015年   52篇
  2014年   25篇
  2013年   50篇
  2012年   30篇
  2011年   30篇
  2010年   23篇
  2009年   21篇
  2008年   22篇
  2007年   35篇
  2006年   27篇
  2005年   13篇
  2004年   16篇
  2003年   9篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
排序方式: 共有589条查询结果,搜索用时 15 毫秒
1.
海面溢油无人机高光谱遥感检测与厚度估算方法   总被引:2,自引:0,他引:2  
任广波  过杰  马毅  罗旭东 《海洋学报》2019,41(5):146-158
海上溢油是海洋国家所面临的共同问题,但至今仍没有一种可靠实用的海上溢油准确识别和油量遥感监测方法。为此,本文以无人机高光谱遥感为手段,开展了海面溢油检测与厚度估算方法研究。实验中,通过搭建室外大型水槽溢油实验装置,获取了模拟真实海洋环境条件下不同溢油量的遥感和现场光谱数据,在此基础上,分析并提取了海上溢油特征光谱波段,给出了海上溢油高光谱检测模型;针对现场实验条件下水面油膜厚度难以测定的问题,设计了3种利用总体溢油量的油膜厚度估算模型。得到如下主要结论:(1)675 nm和699 nm是海上溢油检测的有效特征波段,但对极薄的油膜没有检测能力;(2)提出了归一化溢油指数模型、反比例模型和吸收基线模型等3种海上溢油油膜厚度估算模型,其中对于薄油膜(厚度≤ 5 μm)和厚油膜(厚度>50 μm),反比例模型是溢油厚度反演的首选也是唯一选择。对于中厚度油膜,晴朗天气条件下,归一化溢油指数模型是油膜厚度反演的首选,同时反比例模型和溢油吸收基线模型也都有较好的反演能力,而在多云天气条件下,反比例模型效果最佳。  相似文献   
2.
朱德辉  杜博  张良培 《遥感学报》2020,24(4):427-438
高光谱遥感影像具有光谱分辨率极高的特点,承载了大量可区分不同类型地物的诊断性光谱信息以及区分亚类相似地物之间细微差别的光谱信息,在目标探测领域具有独特的优势。与此同时,高光谱遥感影像也带来了数据维数高、邻近波段之间存在大量冗余信息的问题,高维度的数据结构往往使得高光谱影像异常目标类和背景类之间的可分性降低。为了缓解上述问题,本文提出了一种基于波段选择的协同表达高光谱异常探测算法。首先,使用最优聚类框架对高光谱波段进行选择,获得一组波段子集来表示原有的全部波段,使得高光谱影像异常目标类与背景类之间的可分性增强。然后使用协同表达对影像上的像元进行重建,由于异常目标类和背景类之间的可分性增强,对异常目标像元进行协同表达时将会得到更大的残差,异常目标像元的输出值增大,可以更好地实现异常目标和背景类的分离。本文使用了3组高光谱影像数据进行异常目标探测实验,实验结果表明,该方法与其他现有高光谱异常目标探测算法对比,曲线下面积AUC(Area Under Curve)值更高,可以更好地实现异常目标与背景分离,能够更有效地对高光谱影像进行异常目标探测。  相似文献   
3.
张亚平  张宇  杨楠  罗晓  罗谦 《测绘通报》2019,(12):60-64
为获得分类效果更优良的遥感图像分类方式并解决高光谱遥感图像分类运算速度缓慢的问题,集成Lanczos算法与谱聚类算法,探讨了高光谱遥感图像谱聚类算法应用于遥感图像分类的可行性,提出了一种面向高光谱遥感图像的快速谱聚类算法;通过对比美国圣地亚哥机场高光谱遥感图像K-均值算法与谱聚类算法的分类结果,发现面向高光谱遥感图像的谱聚类算法易于识别线性地物,且分类的速度能得到较大提升。  相似文献   
4.
稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想。本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法。首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类。结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性。  相似文献   
5.
传统的混合像元分解算法认为每个像元都包含图像中所能提取的全部端元组分,但这并不符合实际情况。实际上图像中大多数混合像元仅由少部分端元混合而成。由于端元提取精度及噪声的影响,采用全部端元对混合像元进行分解,会使得混合像元中实际并不存在的端元的丰度估计值不为零,分解结果存在较大误差。由于混合像元大多存在于不同地物的交界处,基于此,本文提出了一种结合图像的空间信息选取混合像元最优端元子集的方法。利用一个空间结构元素,从混合像元的附近邻域开始搜索,将搜索到的纯净像元光谱与所提取的图像端元光谱进行对比,并确定混合像元的端元子集进行分解。根据RMSE大小和变化情况,逐步扩大结构元素的大小,不断调整搜索范围,直至得到最优端元组合。模拟数据和真实数据的试验结果表明,该方法相比传统的全端元光谱分解方法,在总体上获得了更好的分解效果。  相似文献   
6.
波段选择是高光谱遥感图像分类的重要前提,本文提出了一种用于高光谱遥感图像波段选择的改进二进制布谷鸟算法,通过使用混合二进制编码算法更新子代鸟巢和使用遗传算法交叉方式更新被发现鸟巢两个方面对二进制布谷鸟算法进行改进,找出在图像中起主要作用且相关性低的波段,实现对高光谱遥感图像降维。将本文算法运用于PaviaU数据集和AVIRIS数据集,并与二进制布谷鸟算法、二进制粒子群算法、最小冗余最大相关算法、Relief算法等进行对比分析。结果表明,改进二进制布谷鸟算法波段特征选择效率更高,且选取的波段更具代表性,能够较好地提高后续分类精度。  相似文献   
7.
王瑞军  张春雷  王诜  孙永彬  王永军 《地质论评》2021,67(Z1):67z1167-67z1168
正明舒井地区位于甘肃省北西侧,敦煌市北侧、瓜州县北西侧。前人在该区及周边区域开展了区调、矿调及相关多金属矿的勘查工作(王瑞军等,2014,2017),在遥感地质方面,仅开展了多光谱遥感的应用工作,而针对高光谱遥感的研究工作还未开展。明舒井地区基岩出露好、地形起伏小、切割弱,地表蚀变发育,矿床、矿点分布较多,具备开展高光谱遥感技术的地质和自然地理条件,有利于发挥高光谱的技术优势。  相似文献   
8.
高光谱遥感以其超高的光谱维数据优势,使对地物的精细识别和区分能力较传统多光谱遥感数据有质的提升。以HyM ap高光谱数据和高分五号高光谱数据为数据源,选择中国西部基岩区区域开展了高光谱遥感岩性-构造解译工作。通过图像增强处理后,对研究区地层单元、岩体/脉、构造等进行了遥感地质解译。对比已有的地质调查结果,发现高光谱遥感数据相较多光谱/高分数据对岩性-构造信息的展布情况显示得更加清晰和直观,同时其对不同岩性段、不同岩相带,以及细小构造等区分能力突出,表现出明显的技术优势。研究认为,高光谱遥感可为基岩区区域地质填图提供更加客观、真实的地质体、构造展布情况,能提高地质调查填图的效率和质量。  相似文献   
9.
在土壤中重金属含量较低的情况下,重金属的高光谱特征响应非常微弱,不易构建精确的高光谱直接反演模型。为了解决上述问题,依据土壤化学变量间的理化性质,将重金属富集特征转移到与之相关的化学主量元素上,使重金属微弱的信息得以间接定量反演。文中以海伦市黑土土壤为研究对象,通过主成分分析、聚类分析确定了主量元素氧化铁(Fe2O3)与微量重金属As、Zn、Cd之间存在明显吸附赋存关系。选用偏最小二乘法构建了研究区氧化铁含量的最佳反演模型(决定系数为0.704,均方根误差为0.148,F检验为12.732),并利用氧化铁与As、Zn、Cd之间的赋存关系,通过神经网络构建了氧化铁预测值与重金属真实值间的非线性拟合模型,得出As含量的拟合程度最高,Zn的拟合程度较好,Cd的拟合效果较理想,总体相关性分别为0.796、0.732、0.530。研究结果表明,基于氧化铁含量的间接预测模型能对微量重金属As、Zn、Cd进行较好的定量预测,为微量重金属含量的定量分析提供了新的方法参考,为高光谱遥感技术预测土壤重金属含量提供了依据,增强了土壤微量重金属反演可行性,对细化自然资源质量监测、深化开展地学系统综合分析与评价有重要意义。   相似文献   
10.
对目标空间三维—光谱信息的高分辨一体化获取与应用,是对地观测技术发展的前沿科学问题。结合高光谱成像与激光雷达测距的技术优势,对地观测多光谱/高光谱激光雷达遥感技术手段应运而生,并成为遥感技术未来发展的重要方向。本文分3个阶段详细回顾了对地观测高光谱激光雷达系统的发展历程,并针对其独有数据类型阐述了数据处理研究方面的探索研究。最后,重点分析了高光谱激光雷达在测绘领域、农林业领域的重大应用潜力,展望了未来对地观测高光谱激光雷达发展面临的机遇和挑战。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号