首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   15篇
  国内免费   6篇
测绘学   1篇
大气科学   2篇
地球物理   48篇
地质学   11篇
海洋学   21篇
综合类   7篇
自然地理   39篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   7篇
  2009年   10篇
  2008年   11篇
  2007年   8篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
Water erosion on hillslopes is a worldwide environmental problem, which is a rainfall‐induced process, especially extreme rainfall. The great intensity of extreme rainfall strongly enhances the power of overland flow to detach soil and transport sediment. Plant litter is one of the most important constituents of ecosystems that often covers the soil surface and can be incorporated into topsoil. However, little attention has been paid to its effect on flow hydraulics owing to the veiled nature. This study aimed to examine the effects of incorporated litter on the hydraulic properties under extreme rainfall condition. To reach this goal, six litter rates of 0, 0.05, 0.10, 0.20, 0.35, and 0.50 kg m?2 and four litter types collected from deciduous trees, coniferous trees, shrubs, and herbs were incorporated into topsoil. Then, simulated rainfall experiments were performed on five slope gradients (5°, 10°, 15°, 20°, and 25°) with an extreme rainfall intensity of 80 mm h?1. The results showed that Froude number and flow velocity of the overland flow decreased, whereas flow resistance increased exponentially with litter incorporation rate. Litter type had an influence on flow hydraulics, which can mainly be attributed to the variations in surface coverage of the exposed litter and the litter morphology. Flow velocity and Darcy–Weisbach coefficient increased markedly with slope gradient. However, the variation of slope gradient did not modify the relationships between flow hydraulics and incorporated litter rate. The random roughness, resulting from heterogeneous erosion due to the uneven protection of surface exposed litter, increased linearly with litter incorporated rate. As rainfall proceeded, flow hydraulics varied with incorporated litter rate and slope gradient complicatedly due to the increases in flow rate and coverage of the exposed litter and the modification of soil surface roughness.  相似文献   
2.
张鹏  孙鸿儒  贾丙瑞 《冰川冻土》2021,43(6):1840-1847
森林凋落物的分解对于维持生态系统物质循环和养分平衡具有重要意义,并受到不同积雪厚度下冻融格局的影响。冻融期(包括冻结过程期、完全冻结期、融化过程期)是冻土区凋落物分解的重要时期,该时期分解的凋落物量约占全年分解总量的一半。积雪减少通常会导致土壤温度降低、冻融循环次数增加,进而影响凋落物分解。通过综述近10年来积雪变化对我国森林凋落物分解影响的研究成果发现,积雪厚度减少在冻融期通常会抑制凋落物质量损失、碳元素释放和纤维素降解,生长季则起到促进作用,从全年来看多数表现为抑制作用。因此,冻融作用造成凋落物的物理破坏,对其分解的促进作用主要发生在后续生长季。积雪厚度减少在冻融期通常抑制氮元素释放,生长季和全年则无明显规律;磷元素和木质素目前研究还存在很大差异。最后,进一步阐述了积雪变化对凋落物分解影响研究存在的问题及未来研究发展方向。  相似文献   
3.
The Above Ground Biomass(AGB) estimates of vegetation comprise both the bole biomass determined through a volumetric equation and litter biomass collected from the ground.For mature trees,the AGB estimated in phenologically different time periods is directly affected by the litter biomass since the Diameter at Breast Height(DBH) and height(H) of such trees that are used in the estimation of bole biomass would remain unchanged over a reasonable time period.In the present study,we have determined the AGB of Sal trees(Shorea robusta) in two contrasting seasons:the peak green period in October being devoid of lit-ter on the ground and the leaf shedding period in February with abundant amount of litter present on the ground.Estimation of AGB for the month of February included the litter biomass.In contrast,the AGB for October represented only the bole biomass.AGB was estimated for ten different plots selected in the study area.The AGB estimated from ten sampling plots for each time period was re-gressed with the individual tree parameters such as the average DBH and height of trees measured from the corresponding plots.The regression analysis exhibited a significantly stronger relationship between the AGB and DBH for the month of October as compared to February.Furthermore,the correlation between the remotely sensed derived data and AGB was also found to be significantly higher for the month of October than February.This observation indicates that inclusion of the litter biomass in AGB will tend to decrease the re-gression relationship between AGB and DBH and also between the remotely sensed data and AGB.Therefore,these conclusions invite careful consideration while estimating AGB from satellite data in phenologically different time periods.  相似文献   
4.
Leaf litter interception of water is an integral component of the water budget for some vegetated ecosystems. However, loss of rainfall to litter receives considerably less attention than canopy interception due to lack of suitable sensors to measure changes in litter water content. In this study, a commercially available leaf wetness sensor was calibrated to the gravimetric water content of eastern redcedar (Juniperus virginiana ) litter and used to estimate litter interception in a subhumid eastern redcedar woodland in north‐central Oklahoma. Under controlled laboratory conditions, a strong positive correlation between the leaf wetness sensor output voltage (mV) and measured gravimetric litter water content (? g) was determined: ? g = (.0009 × mV2) ? (0.14 × mV) ? 11.41 (R 2 = .94, p  < .0001). This relationship was validated with field sampling and the output voltage (mV) accounted for 48% of the observed variance in the measured water content. The maximum and minimum interception storage capacity ranged between 1.16 and 12.04 and 1.12 and 9.62 mm, respectively. The maximum and minimum amount of intercepted rain was positively correlated to rainfall amount and intensity. The continuous field measurements demonstrated that eastern redcedar litter intercepted approximately 8% of the gross rainfall that fell between December 16, 2014 and May 31, 2015. Therefore, rainfall loss to litter can constitute a substantial component of the annual water budget. Long‐term in situ measurement of litter interception loss is necessary to gain a better estimate of water availability for streamflow and recharge. This is critical to manage water resources in the south‐central Great Plains, USA where grasslands are rapidly being transformed to woodland or woody dominated savanna.  相似文献   
5.
This paper reports baseline levels of litter (macro, meso and microplastics) in sediments collected from different areas of the Croatian MPA of the Natural Park of Tela??ica bay (Adriatic Sea, GSA n. 17). The distribution of total abundance according to size, for all analysed locations evidences that microplastics are the dominant fraction concerning item's numbers. In all analysed samples no macroplastics were found, while microplastics are 88.71% and mesoplastics are 11.29% of the total.  相似文献   
6.
The Liangshui Natural Reserve in Heilongjiang Province of China was selected as the study area. The authors collected the samples of forest litter (Tilia amurensis, Fraxinus mandshurica, Pinus koraiensis, Acer mono, Betula costata, and mixed litter), soil in humus horizon (0--5cm) and soil horizon (5-20cm), and soil macrofauna (Oligochaeta, Geophiloporpha and Juliformia) from 2001 to 2002. The role of soil macrofauna in the material cycle was analyzed through comparing the macro-element contents among various parts of the subsystems and using enrichment index (El). The results indicate that dynamic changes of various litters are very complicated. The contents of Fe in each kind of litter increase firstly, and then decrease in the study period. The changes of macro-element contents are greater in the broad-leaf litter than in the coniferous litter, and the mixed litter is in the middle level, but the differences among them are not significant. The contents of Mg and Fe in humus are higher than those in soil, but the contents of Ca in soil are higher than that in humus. The dynamic changes of macro-element contents in soil and soil fauna are not consistent with those in litter. The diplopod presented obvious enrichment of Ca and Mg (E1〉1), but it does not significantly enrich Fe. Earthworm has a stronger enrichment ability of Fe than diplopod and scolopendra, but E1〈1. Soil fauna can make great influences on the material cycle of the subsystems.  相似文献   
7.
土壤有机碳矿化是调控土壤碳库时空格局、土壤碳收支平衡和植物养分供应的重要过程,植物残体和凋落物分解释放CO2直接影响着土壤有机碳矿化。研究了不同类型凋落物对腾格里沙漠东南缘建植于1956年的人工固沙植被区土壤有机碳矿化过程及其对水分和温度的响应特征。结果表明:凋落物添加显著促进了有机碳矿化,添加柠条锦鸡儿(Caragana korshinskii)、油蒿(Artemisia ordosica)、小画眉草(Eragrostis minor)凋落物后,CO2-C最大矿化速率分别增大了6.94、5.17、3.46倍,0~5 cm层土壤是5~10 cm层土壤的1.09、1.55、1.22倍;CO2-C累积释放量分别增加了3.73、3.38、2.34倍,0~5 cm层土壤是5~10 cm层土壤的1.17、1.30、1.57倍。凋落物对有机碳矿化的促进作用与温度和水分密切相关,25℃时,CO2-C平均释放速率、最大释放速率、累积碳释放量分别是10℃的2.21、3.60、2.21倍,而含水量10%时,CO2-C平均释放速率、最大释放速率和累积碳释放量分别是含水量5%时的1.25、1.20、1.25倍。相关性分析表明,凋落物碳氮含量、碳氮比、木质素比氮和土壤有机碳以及全氮是影响有机碳矿化的主要因子。凋落添加土壤后潜在可矿化碳表现为柠条锦鸡儿>油蒿>小画眉草>对照。凋落物添加显著促进了有机碳矿化过程及碳周转,植被恢复过程中草本植物凋落物的输入更有利于土壤碳固存,凋落物对土壤碳库的调控作用受土壤理化性质和水热等环境因子的共同作用影响。  相似文献   
8.
The Liangshui Natural Reserve in Heilongjiang Province of China was selected as the study area.The authors collected the samples of forest litter (Tilia amurensis,Fraxinus mandshurica,Pinus koraiensis,Acer mono,Betula costata,and mixed litter),soil in humus horizon (0-5cm) and soil horizon (5-20cm),and soil macrofauna (Oligochaeta,Geophiloporpha and Juliformia) from 2001 to 2002.The role of soil macrofauna in the material cycle was analyzed through comparing the macro-element contents among various parts of the subsystems and using enrichment index (EI).The results indicate that dynamic changes of various litters are very complicated.The contents of Fe in each kind of litter increase firstly,and then decrease in the study period.The changes of macro-element contents are greater in the broad-leaf litter than in the coniferous litter,and the mixed litter is in the middle level,but the differences among them are not significant.The contents of Mg and Fe in humus are higher than those in soil,but the contents of Ca in soil are higher than that in humus.The dynamic changes of macro-element contents in soil and soil fauna are not consistent with those in litter.The diplopod presented obvious enrichment of Ca and Mg (EI>1),but it does not significantly enrich Fe.Earthworm has a stronger enrichment ability of Fe than diplopod and scolopendra,but EI<1.Soil fauna can make great influences on the material cycle of the subsystems.  相似文献   
9.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   
10.
Anthropogenic marine debris (AMD) is an ubiquitous problem, which has motivated public participation in activities such as beach surveys and clean-up campaigns. While it is known that beaches in the SE Pacific are also affected by this problem, the quantities and types of AMD remain largely unknown. In the context of an outreach project, volunteers (1500 high-school students) participated in a nation-wide survey of AMD on 43 beaches distributed randomly along the entire Chilean coast (18°S to 53°S). The mean density of AMD was 1.8 items m−2 and the major types were plastics, cigarette butts and glass. Densities in central Chile were lower than in northern and southern Chile, which could be due to different attitudes of beach users or to intense beach cleaning in central regions. We suggest that public participation in surveys and cleaning activities will raise awareness and thereby contribute to an improvement of the situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号