首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
  国内免费   1篇
大气科学   1篇
地球物理   3篇
地质学   3篇
海洋学   2篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2011年   1篇
  2004年   1篇
  2003年   2篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
天然气水合物成因探讨   总被引:18,自引:0,他引:18  
天然气水合物是未来的能源资源。其分布于极地地区、深海地区及深水湖泊中。在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,其分布与近代火山的分布范围具有一致性。同位素组成表明天然气水合物甲烷主要是由自养产甲烷菌还原CO2形成的。典型的大陆边缘沉积物有机碳含量低(<0.5%~1.0%),不足以产生天然气水合物带高含量的甲烷。赋存天然气水合物的沉积物时代主要为晚中新世-晚上新世,具有一定的时限性,并且天然气水合物与火山灰或火山砂共存,表明其形成与火山-热液体系有一定联系。火山与天然气水合物空间上的一致性表明,天然气水合物甲烷的底物可能主要是由洋底火山喷发带来的CO2。由前人研究结果推断 HCO3在脱去两个O原子的同时,可能发生了亲核重排,羟基 H原子迁移到 C原子上,形成了甲酰基(HCO),使甲烷的第一个 H原子来源于水。探讨了甲烷及其水合物的形成机制,提出了天然气水合物成因模型。  相似文献   
4.
微生物介导的土壤甲烷循环及全球变化研究   总被引:9,自引:0,他引:9  
甲烷是主要的温室气体之一, 目前在大气中的含量达1.7×10-6m3·m-3, 比工业革命前增加了115%, 并以1%年增长速度稳定增长. 甲烷吸收太阳远红外光的能力比CO2高20~30倍, 对全球增温的贡献率达15%. 多年来对大气甲烷的产生、转运和循环以及调控的研究表明, 80%以上的甲烷是通过微生物的活动产生的, 一部分在进入大气前被微生物吸收利用, 这样, 大气中甲烷的净含量绝大部分是甲烷产生微生物和甲烷营养微生物相互作用的结果. 因此, 研究甲烷产生菌和甲烷氧化菌的活动规律和生态学特征, 有利于揭示微生物介导的甲烷循环过程, 并探索减排的措施. 已知有80多种甲烷产生菌和100余种甲烷氧化菌, 它们的种类和生态多样性比较广泛, 环境差异和波动影响它们的生理代谢活性, 从而导致甲烷排放的波动性和不确定性. 在未来全球变化条件下, 天然湿地作为重要的甲烷源之一, 如何响应和反馈环境的变化是研究的重点领域.  相似文献   
5.
湖泊生态系统产甲烷与甲烷氧化微生物研究进展   总被引:3,自引:1,他引:2  
唐千  薛校风  王惠  邢鹏 《湖泊科学》2018,30(3):597-610
湖泊生态系统是重要的大气甲烷来源,其甲烷释放量占全球自然生态系统的40%.产甲烷和甲烷氧化微生物在湖泊甲烷生产和消耗过程中发挥关键作用.本文综述了近期有关湖泊生态系统甲烷产生与氧化过程的研究进展,重点介绍产甲烷与甲烷氧化微生物在湖泊中的分布特征、代谢途径以及调控机制.现有研究表明,湖泊中甲烷的生成不仅仅依靠赋存于沉积物和水体厌氧层的产甲烷古菌,还可能来自有氧环境中其他产甲烷微生物的代谢作用.湖泊中的甲烷在脱离水体逸散至大气之前,被甲烷氧化微生物利用,转化成二氧化碳和小分子有机化合物(如甲醇、甲醛和甲酸等).除了传统依赖氧气作为电子受体的好氧氧化过程外,新近研究还揭示了多种厌氧甲烷氧化过程,包括依赖还原硫酸盐、硝酸盐和亚硝酸盐以及Fe~(3+)/Mn~(4+)等金属离子的甲烷氧化过程.文献综合分析表明,反硝化型厌氧甲烷氧化过程主要发生在淡水湖泊中,而硫酸盐还原型主要发生在高盐度或者高碱度湖泊中.水体温度、溶解氧浓度可以显著影响产甲烷与甲烷氧化微生物的丰度与群落结构,其他湖泊环境条件,如盐度、pH和有机质类型等都可能改变产甲烷与甲烷氧化微生物的分布和代谢活性.不同湖泊类型的比较研究,有助于全面掌握影响湖泊产甲烷与甲烷氧化微生物的时空分布与代谢特征的主导因素.  相似文献   
6.
结合Hungate无氧分离技术,对海岸带沉积物中甲烷代谢菌进行了富集培养,分别为珠江口的甲烷产生菌和九龙江口的甲烷氧化菌及其他甲基氧化菌.其研究结果表明:在珠江口淇澳岛海岸带沉积物中,甲烷八叠球菌属(Methanosarcina)为优势菌株,分布于沉积物的上、中、下3个层位,并发现了部分序列与不可培养的泉古菌门(Crcnarchaeota)的杂色泉古菌(miscellaneouscrenarchaeoticgroup,MCG)的相似度为90%~99%.在九龙江口的海岸带沉积物环境中,噬甲基菌属(Methylophaga)为优势菌群,在富集产物菌群多样性中占60%~99%;还有一些相似度较低(为95%~97%)的菌群,为潜在的新种.  相似文献   
7.
Methanotrophic biomass and community structure were assessed for a soil column enriched with natural gas. An increase in microbial biomass, based on phospholipid ester-linked fatty acids (PLFA), was apparent for the natural gas-enriched column relative to a control column and untreated surface soil. Following GC-MS analyses of the derivatized monounsaturated fatty acids, the major component (22% of the PLFA) of the natural gas-enriched column was identified as 18·1Δ 10c. This relatively novel fatty acid has only been previously reported as a major component in methanotrophs. Its presence in the soil, together with other supportive evidence, implies that this microbial metabolic group makes a large contribution to the column flora. Other microbial groups were also recognized and differences compared between the soils analysed. A recently developed HPLC method for the separation and characterisation of archaebacterial phospholipid-derived signature di- and tetra-ether lipids was used to examine methane-producing digesters. With this technique, methanogenic biomasses of approximately 1011 bacteria per g dry weight of digestor material were determined. Differences between ratios of diether to tetraether phospholipids were apparent for the digestors analysed, though the causes are at this stage unknown. Taken together, these two methods can be used to estimate methanotrophic and methanogenic contributions in both model systems and environmental samples.  相似文献   
8.
Wetland ecosystems are the most important natural methane (CH4) sources, whose fluxes periodically fluctuate. Methanogens (methane producers) and methanotrophs (methane consumers) are considered key factors affecting CH4 fluxes in wetlands. However, the symbiotic relationship between methanogens and methanotrophs remains unclear. To help close this research gap, we collected and analyzed samples from four soil depths in the Dajiuhu subalpine peatland in January, April, July, and October 2019 and acquired seasonal methane flux data from an eddy covariance (EC) system, and investigated relationships. A phylogenetic molecular ecological networks (pMENs) analysis was used to identify keystone species and the seasonal variations of the co-occurrence patterns of methanogenic and methanotrophic communities. The results indicate that the seasonal variations of the interactions between methanogenic and methanotrophic communities contributed to CH4 emissions in wetlands. The keystone species discerned by the network analysis also showed their importance in mediating CH4 fluxes. Methane (CH4) emissions in wetlands were lowest in spring; during this period, the most complex interactions between microbes were observed, with intense competition among methanogens while methanotrophs demonstrated better cooperation. Reverse patterns manifested themselves in summer when the highest CH4 flux was observed. Methanoregula formicica was negatively correlated with CH4 fluxes and occupied the largest ecological niches in the spring network. In contrast, both Methanocella arvoryzae and Methylocystaceae demonstrated positive correlations with CH4 fluxes and were better adapted to the microbial community in the summer. In addition, soil temperature and nitrogen were regarded as significant environmental factors to CH4 fluxes. This study was successful in explaining the seasonal patterns and microbial driving mechanisms of CH4 emissions in wetlands.  相似文献   
9.
产甲烷古菌在滨海沉积物碳循环过程中起着重要作用。本研究以渤海不同区域沉积物为研究对象,通过T-RFLP以及室内富集培养方法,解析了渤海不同区域沉积物产甲烷菌群落结构差异,并评估其产甲烷潜力。结果表明,渤海不同区域沉积物细菌和产甲烷古菌群落结构组成存在差异,其主要优势产甲烷菌为Methanobacterium和Methanosarcina,主要优势细菌为Desulfovibrio和Thiobacillus。渤海不同区域沉积物在实验室培养条件下产甲烷量存在明显差异,表现为近岸区域沉积物产甲烷量较高。且渤海沉积物具有较高的产甲烷潜力(乙酸转换率达到46.46%),潜在甲烷排放量估计值可达1.74亿t/年。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号