首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   349篇
  国内免费   215篇
测绘学   87篇
大气科学   144篇
地球物理   527篇
地质学   727篇
海洋学   63篇
天文学   8篇
综合类   133篇
自然地理   611篇
  2023年   19篇
  2022年   49篇
  2021年   70篇
  2020年   81篇
  2019年   49篇
  2018年   62篇
  2017年   71篇
  2016年   69篇
  2015年   60篇
  2014年   98篇
  2013年   115篇
  2012年   87篇
  2011年   90篇
  2010年   89篇
  2009年   93篇
  2008年   83篇
  2007年   89篇
  2006年   115篇
  2005年   83篇
  2004年   79篇
  2003年   90篇
  2002年   85篇
  2001年   75篇
  2000年   87篇
  1999年   73篇
  1998年   51篇
  1997年   53篇
  1996年   37篇
  1995年   38篇
  1994年   36篇
  1993年   35篇
  1992年   29篇
  1991年   19篇
  1990年   13篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有2300条查询结果,搜索用时 30 毫秒
1.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
2.
铷、铯是我国战略性关键矿产资源。西藏盐湖卤水中赋存着丰富的铷、铯资源,但是品位普遍低于10 mg/L。根据热泉与盐湖锂、铷、铯等元素的补给关系和含量差异特征及铷、铯极易被黏土矿物吸附等特点,推测盐湖沉积物中赋存一定规模的铷、铯资源。为验证该推测,本文选取西藏拉果错、聂尔错、依布茶卡、当穹错、扎布耶茶卡等5个典型盐湖,采集卤水和沉积物样品各5件,开展水体中铷、铯含量和沉积物矿物成分分析,结合沉积物分相淋滤实验,得出如下结论:西藏拉果错、当穹错、聂尔错盐湖卤水铷、铯含量和资源量与其补给量差异显著,大量的铷、铯资源消耗于盐湖沉积物中;盐湖沉积物中的铷、铯含量远高于卤水。铷、铯在沉积物水溶相、碳酸盐相中含量较低,主要以吸附形式赋存于黏土矿物(主要为伊利石),吸附点位包括基面位置、难解吸的磨损边缘及层间位置。盐湖沉积物铷、铯资源量远超大型矿床规模,黏土矿物中铷、铯含量高达100 n×10-6,超过固体盐类矿产综合评价指标,相较于现有盐湖钾产品中的铷资源、含铯硅华中的铯资源开发,具有较好的开发利用性,是一种潜在的铷、铯资源。本研究成果有助于完善盐湖铷、铯富集成矿机制,并为高效开发盐湖中的铷、铯资源提供理论支撑。  相似文献   
3.
ABSTRACT

In the European Alps, high mountain environments are subject to major impacts resulting from climate change, which strongly affect human activities such as mountaineering. The purpose of the study was to examine changes in access routes to 30 high mountain huts in the Western Alps since the 1990s. Data were derived from the use of two different methods, geo-historical studies and a questionnaire, and were used to identify both the climate-related processes affecting the climbing routes and the strategies implemented by public entities, Alpine clubs, guide companies, and hut keepers to maintain acceptable safety and technical conditions. The case studies revealed issues affecting three access routes and the results from the questionnaire showed that the main processes affecting access routes were loss of ice thickness and retreat from the front of the glaciated areas. Commonly, in situ equipment was installed to facilitate access for mountaineers and/or a part of a route was relocated to a safer area. The authors conclude that in most cases, the measures were effective but they were limited by financial, ethical and legal issues, especially in protected or classified areas that could jeopardise their durability and effectiveness.  相似文献   
4.
以山洪灾害风险评价的多准则决策模型、最大熵模型、信息量模型三种常见模型为研究对象,选取河西走廊和张掖市为地理区划(大中)、市域(小)空间尺度研究区,构建山洪灾害风险评价指标体系,分别完成基于三种模型的两种空间尺度的山洪灾害风险评价制图,基于甘肃省地质灾害调查与区划报告数据从模型验证、空间自相关、精度对比和尺度效应等角度对比分析三个模型应用于不同空间尺度的适应性,并给出优选模型。结果表明:最大熵模型是河西走廊(地理区划)空间尺度上山洪灾害风险评价的优选模型;多准则决策模型不适用于张掖市(市域)空间尺度评价,且三个模型运行结果均没有河西走廊(地理区划)空间尺度上表现良好;三个模型的尺度效应明显,在地理区划空间尺度上应用较良好,缩小至市域空间尺度上模拟结果误差增大;不同空间尺度上,最大熵模型均优于多准则决策模型和信息量模型,适用于地理区划(大中)、市域(小)空间尺度的山洪灾害风险评价。  相似文献   
5.
Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain-scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi-automated workflow that combines millimeter- to centimeter-scale structure-from-motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder-bedded channels with a wide range of grain size, sorting, and shape. Large-eddy simulations with body-fitted meshes generated from SfM photogrammetry-derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second-order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation σz of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface-generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.  H/σz, is proposed based on the comparison between σz and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well-sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July–October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m3 large, instable rock volume, due to thermal forcing. Relative seismic wave velocity changes also indicate diurnal accumulation and release of stress within the rock mass. At longer time scales, there is a systematic superimposed pattern of stress increased over multiple days and episodic stress release within a few days, expressed in an increased emission of short seismic pulses indicative of rock cracking. Our data provide essential first order information on the development of large-scale slope instabilities towards catastrophic failure. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
8.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
9.
华蓥山中段地区地下水资源量评价   总被引:1,自引:1,他引:0  
康小兵  罗声  许模  刘宏 《中国岩溶》2018,37(4):527-534
四川华蓥山中段地区水流失比较严重,供需矛盾突出,水环境持续恶化,不但影响到居民正常的生产和生活,而且严重影响了该地区国民经济的建设和发展。通过野外调查和综合分析现场收集的资料,总结出华蓥山中段地区地下水资源量流失情况:该区每年流失的水资源量约为0.914 4亿m3,且华蓥山褶皱西翼水流失总量大于东翼,而西翼北端是区内水流失量最严重的区域,其水资源量流失的影响因素主要为气候、社会发展及人类活动等。   相似文献   
10.
One of the challenges in using general circulation model (GCM) output is the need to downscale beyond the model’s coarse spatial grid for use in hydrologic modeling of climate-change impacts. In mountainous terrain, using elevation as a primary control on temperature and precipitation at the local scale provides the potential for topographic variables to be used to adjust climate-model output. Here, local topographic lapse rates (LTLR) were estimated from gridded climate data for the Pacific Northwest of the United States and used to downscale GCM output. Skill scores were calculated for the LTLR-downscaled climate-model output relative to an existing set of model output downscaled using the established statistical downscaling technique of localized constructed analogs (LOCA). The results indicate that the LTLR method performs well in the mountainous study region relative to the LOCA method. LTLR downscaling offers a promising method for downscaling climate-model output in regions in which elevation strongly controls climate, particularly for studying impacts of future climate change on water resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号