首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   69篇
  国内免费   54篇
测绘学   1篇
大气科学   51篇
地球物理   115篇
地质学   97篇
海洋学   96篇
综合类   13篇
自然地理   35篇
  2023年   7篇
  2022年   12篇
  2021年   19篇
  2020年   17篇
  2019年   12篇
  2018年   8篇
  2017年   10篇
  2016年   11篇
  2015年   15篇
  2014年   13篇
  2013年   31篇
  2012年   15篇
  2011年   12篇
  2010年   16篇
  2009年   12篇
  2008年   14篇
  2007年   22篇
  2006年   26篇
  2005年   16篇
  2004年   13篇
  2003年   14篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
岩溶含水层的极不均一性特征使岩溶水溶质运移受构造、裂隙空间及其发育方向控制;因环境条件复杂,开展岩溶水污染原位修复技术难度较大,截止目前,国内尚未系统地开展岩溶含水层水污染原位修复研究工作。文章选择鲁中南山区典型岩溶发育及硝酸盐污染地段,施工组合钻孔建设修复试验工程,采用“乙醇+葡萄糖”液态碳源和“聚乙烯醇+淀粉颗粒”固态反应器分别进行岩溶水硝酸盐污染原位修复试验。结果表明:浓度500 mg?L-1、1 000 mg?L-1的“乙醇+葡萄糖”反硝化溶液对硝酸盐浓度的降解率分别为6.45 %和21.52 %;单位长度组成材料“聚乙烯醇3 kg+淀粉颗粒3 kg”、“聚乙烯醇2 kg+淀粉颗粒4 kg”的两种反硝化固态反应器对硝酸盐浓度的降解率分为33.91%和34.96%。试验证明在裂隙型岩溶地区采用孔组方案进行地下水污染原位修复技术可行、且能取得较显著效果。修复工程布设方式和试验成果对类似地区开展岩溶地下水污染原位修复具一定借鉴意义。   相似文献   
3.
地下水是张掖盆地的重要水资源,其硝酸盐污染尚未得到足够重视。对张掖盆地2004、2015年地下水硝酸盐浓度进行了系统分析,并采用美国环境保护署(USEPA)推荐的健康风险评价模型评估了地下水硝酸盐的健康风险。结果表明:自2004年以来张掖盆地地下水硝酸盐污染日趋严重。2015年硝酸盐浓度最高已达到283.32 mg·L-1,17.61%的采样点硝酸盐氮浓度超过GB5749-2006《生活饮用水卫生标准》中饮用地下水限量值(20 mg·L-1)。研究区人群经皮肤接触途径摄入硝酸盐的健康风险在可接受水平,而饮水摄入硝酸盐的健康风险较高,总风险中饮水途径引起健康风险的贡献率占99.40%,远大于皮肤接触途径。儿童经饮水摄入和皮肤接触两种途径的健康风险均显著高于成人,分别为成人的1.544倍和1.039倍。32.39%的采样点地下水硝酸盐对儿童的健康风险超出了可接受水平,14.79%的采样点地下水硝酸盐对成人的健康风险不可接受。甘州区城区、临泽县北部边缘及高台县城区周围硝酸盐浓度最高,这些区域内所有人群都面临硝酸盐引发的高健康风险,其余区域硝酸盐引发的健康风险相对较低。  相似文献   
4.
在槽式太阳能热发电领域,硝酸镁基熔盐逐渐引起关注。通过六水硝酸镁煅烧法制备无水硝酸镁,采用拉曼、DSC与XRD表征脱水产物,系统研究了环境压力、脱水温度与时间对六水硝酸镁脱水和水解的影响。结果表明,六水硝酸镁在煅烧过程中水解为碱式硝酸镁Mg_3(OH)_4(NO_3)_2,在水溶液中进一步分解为Mg(OH)_2。随着煅烧温度和时间的增加,脱水产物中的含水量逐渐减少,同时水解产物Mg_3(OH)_4(NO_3)_2含量逐渐增加。真空环境下煅烧,可显著降低硝酸镁的水解反应。六水硝酸镁在真空环境下230℃煅烧1.5 h,所制备的无水硝酸镁中水解产物含量为3.63%。制备的硝酸镁可进一步用于硝酸镁基熔盐的研究。  相似文献   
5.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   
6.
We collected living individuals of the bivalve Lembulus bicuspidatus, which shows an unusual preference for the oxygen-deficient habitat found at the Angola–Benguela Frontal Zone of the southeastern Atlantic. With a series of incubation experiments with 15N-labelled nitrate as a tracer in combination with membrane-inlet mass spectrometry, we studied the potential contribution of L. bicuspidatus to nitrate reduction in the upper sediment layer. Our preliminary results suggest that L. bicuspidatus enhances nitrate reduction if the oxygen concentration is sufficiently low. The Lembulus-mediated nitrate reduction rate is then similar to the rate of microbial nitrate reduction in the surrounding sediment.  相似文献   
7.
8.
Large water‐sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre‐impoundment and post‐impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock‐yard manure, and untreated human wastes measurably increased ammonia and organic‐nitrogen concentrations during low flows. Average total‐nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate‐organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended‐sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post‐impoundment period. If strategies to decrease total‐nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate‐reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
9.
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix flowed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity (R〉0,99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability (RSD〈5%, n=6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.  相似文献   
10.
The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse‐scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine‐scale (<1 cm) biogeochemical patterns, especially in near‐surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3?. In this study, we utilised diffusive equilibrium in thin‐films samplers to capture high resolution (cm‐scale) vertical concentration profiles of NO3?, SO42?, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub‐reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin‐films samplers indicate considerable cm‐scale variability in NO3? (4.4 ± 2.9 mg N/L), SO42? (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface‐subsurface water mixing in the shallow sediments of our sub‐reach under baseflow conditions. The significance of this is that upwelling NO3?‐rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub‐reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper‐seated groundwater fluxes and hydro‐stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub‐reach. © 2015 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号