首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   58篇
  国内免费   4篇
测绘学   1篇
地球物理   148篇
地质学   20篇
海洋学   16篇
自然地理   53篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   20篇
  2019年   11篇
  2018年   8篇
  2017年   11篇
  2016年   15篇
  2015年   10篇
  2014年   20篇
  2013年   24篇
  2012年   20篇
  2011年   7篇
  2010年   11篇
  2009年   10篇
  2008年   11篇
  2007年   8篇
  2006年   14篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有238条查询结果,搜索用时 26 毫秒
1.
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.  相似文献   
2.
The strength and architecture of roots and other below-ground organs of riparian and aquatic plants affect plant resistance to uprooting and contribute to reinforcing river bank, bar and bed materials. Therefore, root properties are an important element in models for estimating river bank stability and such models may focus on the role of plants by using root strength–diameter relationships for the particular plant species that are present. Here we explore the degree to which there appear to be significant differences in strength–diameter relationships between and within species-specific data sets obtained for two riparian tree/shrub (Populus nigra, Salix alba) and two emergent aquatic macrophyte (Sparganium erectum, Phalaris arundinacea) species in different European river environments. While the analysed data sets were not specifically collected to answer these research questions, the results are sufficiently compelling to make the case for the collection of a more comprehensive data set and its rigorous analysis. This would allow recommendations to be made on the degree to which (i) species-specific or more general relationships between root/rhizome strength and diameter are appropriate, (ii) such relationships are applicable within and between rivers in different geographical regions and subject to different local environmental conditions, and (iii) further (minimalist) field observations are needed to calibrate such relationships for investigations of new locales or species. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
3.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   
4.
5.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
6.
Changes in streamflow and water table elevation influence oxidation–reduction (redox) conditions near river–aquifer interfaces, with potentially important consequences for solute fluxes and biogeochemical reaction rates. Although continuous measurements of groundwater chemistry can be arduous, in situ sensors reveal chemistry dynamics across a wide range of timescales. We monitored redox potential in an aquifer adjacent to a tidal river and used spectral and wavelet analyses to link redox responses to hydrologic perturbations within the bed and banks. Storms perturb redox potential within both the bed and banks over timescales of days to weeks. Tides drive semidiurnal oscillations in redox potential within the streambed that are absent in the banks. Wavelet analysis shows that tidal redox oscillations in the bed are greatest during late summer (wavelet magnitude of 5.62 mV) when river stage fluctuations are on the order of 70 cm and microbial activity is relatively high. Tidal redox oscillations diminish during the winter (wavelet magnitude of 2.73 mV) when river stage fluctuations are smaller (on the order of 50 cm) and microbial activity is presumably low. Although traditional geochemical observations are often limited to summer baseflow conditions, in situ redox sensing provides continuous, high‐resolution chemical characterization of the subsurface, revealing transport and reaction processes across spatial and temporal scales in aquifers.  相似文献   
7.
8.
Many large rivers around the world no longer flow to their deltas, due to ever greater water withdrawals and diversions for human needs. However, the importance of riparian ecosystems is drawing increasing recognition, leading to the allocation of environmental flows to restore river processes. Accurate estimates of riparian plant evapotranspiration (ET) are needed to understand how the riverine system responds to these rare events and achieve the goals of environmental flows. In 2014, historic environmental flows were released into the Lower Colorado River at Morelos Dam (Mexico); this once perennial but now dry reach is the final stretch to the mighty Colorado River Delta. One of the primary goals was to supply native vegetation restoration sites along the reach with water to help seedlings establish and boost groundwater levels to foster the planted saplings. Patterns in ET before, during, and after the flows are useful for evaluating whether this goal was met and understanding the role that ET plays in this now ephemeral river system. Here, diurnal fluctuations in groundwater levels and Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to compare estimates of ET specifically at 3 native vegetation restoration sites during 2014 planned flow events, and MODIS data were used to evaluate long‐term (2002–2016) ET responses to restoration efforts at these sites. Overall, ET was generally 0–10 mm d?1 across sites, and although daily ET values from groundwater data were highly variable, weekly averaged estimates were highly correlated with MODIS‐derived estimates at most sites. The influence of the 2014 flow events was not immediately apparent in the results, although the process of clearing vegetation and planting native vegetation at the restoration sites was clearly visible in the results.  相似文献   
9.
Dense understory thickets of the native evergreen shrub Rhododendron maximum expanded initially following elimination of American chestnut by the chestnut blight, and later in response to loss of the eastern hemlock due to hemlock woolly adelgid invasion. Rhododendron thickets often blanket streams and their riparian zones, creating cool, low-light microclimates. To determine the effect of such understory thickets on summer stream temperatures, we removed riparian rhododendron understory on 300 m reaches of two southern Appalachian Mountain headwater streams, while leaving two 300 m reference reaches undisturbed. Overhead canopy was left intact in all four streams, but all streams were selected to have a significant component of dead or dying eastern hemlock in the overstory, creating time-varying canopy gaps throughout the reach. We continuously monitored temperatures upstream, within and downstream of treatment and reference reaches. Temperatures were monitored in all four streams in the summer before treatments were imposed (2014), and for two summers following treatment (2015, 2016). Temperatures varied significantly across and within streams prior to treatment and across years for the reference streams. After rhododendron removal, increases in summer stream temperatures were observed at some locations within the treatment reaches, but these increases did not persist downstream and varied by watershed, sensor, and year. Significant increases in daily maxima in treatment reaches ranged from 0.9 to 2.6°C. Overhead canopy provided enough shade to prevent rhododendron removal from increasing summer temperatures to levels deleterious to native cold-water fauna (average summer temperatures remained below 16°C), and local temperature effects were not persistent.  相似文献   
10.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号