首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   79篇
  国内免费   15篇
测绘学   10篇
大气科学   10篇
地球物理   263篇
地质学   126篇
海洋学   47篇
天文学   1篇
综合类   12篇
自然地理   95篇
  2023年   3篇
  2022年   8篇
  2021年   19篇
  2020年   26篇
  2019年   22篇
  2018年   16篇
  2017年   20篇
  2016年   20篇
  2015年   19篇
  2014年   25篇
  2013年   49篇
  2012年   29篇
  2011年   21篇
  2010年   16篇
  2009年   26篇
  2008年   26篇
  2007年   24篇
  2006年   26篇
  2005年   23篇
  2004年   16篇
  2003年   19篇
  2002年   12篇
  2001年   14篇
  2000年   8篇
  1999年   1篇
  1998年   9篇
  1997年   12篇
  1996年   1篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
1.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
2.
高顶山矿区位于广安华蓥市城区东南约5km处。长期的采矿活动,导致区内矿山地质环境问题突出,严重影响华蓥山地区人民的生命财产安全。矿山地质环境问题亟待解决。本文通过分析区内主要存在的矿山地质环境问题,提出通过矿山地质灾害、矿山土地恢复、矿山地形地貌景观恢复治理,河道综合整治、道路修复、生态保育、产业提升等措施;消除安全隐患,保障区内人民生命财产安全;改善生态环境,实现华蓥山地区生态环境全面恢复,生态环境质量提升,提高环境承载力,实现区内"山青、水秀、林美、田良"的目标。并对区内的产业转型升级进行了探讨,提出将高顶山矿区建设成具有科普和教育价值的旅游景观目的地;利用矿区独具特色工业人文景观和别致的自然景观,将高顶山矿区建设成集"科普、休闲、康养、户外、探秘"五大功能于一体的矿山公园,推动矿业经济转型升级,促进产业结构转型和经济社会可持续发展。  相似文献   
3.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
4.
Sediment supply (Qs) is often overlooked in modelling studies of landscape evolution, despite sediment playing a key role in the physical processes that drive erosion and sedimentation in river channels. Here, we show the direct impact of the supply of coarse-grained, hard sediment on the geometry of bedrock channels from the Rangitikei River, New Zealand. Channels receiving a coarse bedload sediment supply are systematically (up to an order of magnitude) wider than channels with no bedload sediment input for a given discharge. We also present physical model experiments of a bedrock river channel with a fixed water discharge (1.5 l min−1) under different Qs (between 0 and 20 g l−1) that allow the quantification of the role of sediment in setting the width and slope of channels and the distribution of shear stress within channels. The addition of bedload sediment increases the width, slope and width-to-depth ratio of the channels, and increasing sediment loads promote emerging complexity in channel morphology and shear stress distributions. Channels with low Qs are characterized by simple in-channel morphologies with a uniform distribution of shear stress within the channel while channels with high Qs are characterized by dynamic channels with multiple active threads and a non-uniform distribution of shear stress. We compare bedrock channel geometries from the Rangitikei and the experiments to alluvial channels and demonstrate that the behaviour is similar, with a transition from single-thread and uniform channels to multiple threads occurring when bedload sediment is present. In the experimental bedrock channels, this threshold Qs is when the input sediment supply exceeds the transport capacity of the channel. Caution is required when using the channel geometry to reconstruct past environmental conditions or to invert for tectonic uplift rates, because multiple configurations of channel geometry can exist for a given discharge, solely due to input Qs. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
5.
Anabranching rivers evolve in various geomorphic settings and various river planforms are present within these multi‐channel systems. In some cases, anabranches develop meandering patterns. Such river courses existed in Europe prior to intensive hydro‐technical works carried out during the last 250 years. Proglacial stream valleys, inherited from the last glaciation, provided a suitable environment for the development of anabranching rivers (wide valleys floors with abundant sand deposits). The main objective of the present study is to reconstruct the formation of an anabranching river planform characterized by meandering anabranches. Based on geophysical and geological data obtained from field research and a reconstruction of palaeodischarges, a model of the evolution of an anabranching river formed in a sandy floodplain is proposed. It is demonstrated that such a river system evolves from a meandering to an anabranching planform in periods of high flows that contribute to the formation of crevasse splays. The splay channels evolve then into new meandering flow paths that form ‘second‐order’ crevasses, avulsions and cutoffs. The efficiency of the flow is maintained by the formation of cutoffs and avulsions preventing the development of high sinuosity channels, and redirecting the flow to newly formed channels during maximum flow events. A comparison with other anabranching systems revealed that increased discharges and sediment loads are capable of forming anabranching planforms both in dryland and temperate climate zones. The sediment type available for transport, often inherited from older sedimentary environments, is an important variable determining whether the channel planform is anabranching, with actively migrating channels, or anastomosing, with stable, straight or sinuous branches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
Cohesive sediment dynamics in mountainous rivers is poorly understood even though these rivers are the main providers of fine particles to the oceans. Complex interactions exist between the coarse matrix of cobble bed rivers and fine sediments. Given that fine sediment load in such environments can be very high due to intense natural rainfall or snowmelt events and to man‐induced reservoir or dam flushing, a better understanding of the deposition and sedimentation processes is needed in order to reduce ecohydrological downstream impacts. We tested a field‐based approach on the Arc and Isère alpine rivers combining measurements of erosion and settling properties of river bed deposits before and after a dam flushing, with the U‐GEMS (Gust Erosion Microcosm System) and SCAF (System Characterizing Aggregates and Flocs), respectively. These measurements highlight that critical shears, rates of erosion, settling velocities and propensity of particles to flocculate are highly variable in time and space. This is reflective of the heterogeneity of the hydrodynamic conditions during particle settling, local bed roughness, and nature and size of particles. Generally the deposits were found to be stable relative to what is measured in lowland rivers. It was, however, not possible to make a conclusive assessment of the extent to which the dynamics of deposits after reservoir flushing were different from those settled after natural events. The absence of any relationships between erosion and deposition variables, making it impossible to predict one from another, underlined the need to measure all of them to have a full assessment of the fine sediment dynamics and to obtain representative input variables for numerical models. While the SCAF was found to be effective, an alternative to the U‐GEMS device will have to be found for the erodibility assessment in cobble bed rivers, in order to make more rapid measurements at higher shears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
7.
The biodiversity hotspot region of the Eastern Himalayas consists of a vast freshwater network enriched with species diversity. Many small-scale torrential rivers and water reaches contribute to the species pool of all the major rivers by converging downstream. These reaches are most likely to be degraded at a faster rate as compared to the large-scale rivers following an increased rate of urbanization, habitat alterations, and changing climatic conditions. Therefore, this study aims to explore River Murti, which is a representative small scale river system characterized by a large altitudinal gradient and a diverse watershed area. Ichthyofaunal diversity (i.e., diversity, evenness & richness) and 21 environmental variables are measured through a tri-seasonal sampling effort conducted along 14 selected locations. A total of 41 fish species (including species belonging to 4 Near Threatened, 8 Vulnerable, and 1 Endangered) are found inhabiting this river. Ichthyofaunal assemblage is found to be primarily modulated by habitat diversity and landscape variables. Three Aquatic Ecological Systems (AES) have been identified along this river in a top-down approach based on recorded environmental variables. We have calculated an observed/expected ratio for each diversity indices along 14 locations based on predicted temporal variability using boosted regression (BRT) models. The evaluation of diversity status has been kept at 0.5 to account for a 50% loss or deviation from observed (O/E50). This evaluation has been successfully used to delineate AES1 with majorly “Impaired” status and thus ensures its importance in terms of species conservation. Our study indicates the contribution of 11 major environmental drivers modulating the species assemblage patterns in these AES. Amongst them, altitude, substrate coarseness, river morphology, and shelter availability are strongly associated with species diversity as per the BRT models. These underlying factors are also correlated with “basin pressure,” suggesting that anthropogenic disturbances, as well as the changing climate, might play an important role in the gradual change in environmental conditions, which in turn could cause a shift in species assemblage structure.  相似文献   
8.
Lateral movements of alluvial river channels control the extent and reworking rates of alluvial fans, floodplains, deltas, and alluvial sections of bedrock rivers. These lateral movements can occur by gradual channel migration or by sudden changes in channel position (avulsions). Whereas models exist for rates of river avulsion, we lack a detailed understanding of the rates of lateral channel migration on the scale of a channel belt. In a two-step process, we develop here an expression for the lateral migration rate of braided channel systems in coarse, non-cohesive sediment. On the basis of photographic and topographic data from laboratory experiments of braided channels performed under constant external boundary conditions, we first explore the impact of autogenic variations of the channel-system geometry (i.e. channel-bank heights, water depths, channel-system width, and channel slope) on channel-migration rates. In agreement with theoretical expectations, we find that, under such constant boundary conditions, the laterally reworked volume of sediment is constant and lateral channel-migration rates scale inversely with the channel-bank height. Furthermore, when channel-bank heights are accounted for, lateral migration rates are independent of the remaining channel geometry parameters. These constraints allow us, in a second step, to derive two alternative expressions for lateral channel-migration rates under different boundary conditions using dimensional analysis. Fits of a compilation of laboratory experiments to these expressions suggest that, for a given channel bank-height, migration rates are strongly sensitive to water discharges and more weakly sensitive to sediment discharges. In addition, external perturbations, such as changes in sediment and water discharges or base level fall, can indirectly affect lateral channel-migration rates by modulating channel-bank heights. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd. © 2019 The Author. Earth Surface Processes and Landforms published by John Wiley & Sons, Ltd.  相似文献   
9.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
10.
以水利益共享代替分水的理念有利于充分发挥水资源效益和减少区域矛盾冲突,但由于缺乏具体可实施的分配模式一直停留在设想阶段。基于水利益共享理念,建立跨境流域水资源多目标分配指标体系,并结合澜沧江-湄公河流域跨境水资源利用现状及需求,提出澜沧江-湄公河流域跨境水资源多目标分配模型。为基于水利益共享的跨境水资源多目标分配提供了具有充分可操作性的指标体系和分配模型,有助于推进跨境流域水利益共享的实施,实现区域双边或多边在水资源利用上的共赢和发展目标。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号