首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   183篇
测绘学   5篇
大气科学   26篇
地球物理   241篇
地质学   131篇
海洋学   22篇
综合类   9篇
自然地理   113篇
  2023年   1篇
  2022年   9篇
  2021年   8篇
  2020年   13篇
  2019年   15篇
  2018年   20篇
  2017年   22篇
  2016年   25篇
  2015年   19篇
  2014年   20篇
  2013年   48篇
  2012年   27篇
  2011年   45篇
  2010年   24篇
  2009年   27篇
  2008年   40篇
  2007年   32篇
  2006年   29篇
  2005年   14篇
  2004年   16篇
  2003年   22篇
  2002年   24篇
  2001年   19篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1991年   2篇
  1988年   1篇
  1983年   2篇
排序方式: 共有547条查询结果,搜索用时 26 毫秒
1.
嫩江流域近45年来径流演变规律研究   总被引:4,自引:0,他引:4  
采用随机水文学方法对嫩江流域1956~2000年的年径流量序列演变特征进行分析。结果表明,嫩江流域径流的水文周期是32 a,整体而言,45 a径流序列不存在明显的趋势性。此外,对嫩江流域用水性消耗程度进行分析。结果表明,人类用水性消耗量对流域水循环整体影响程度为5%,但是在流域内部影响程度存在较大差异。洮儿河子流域影响因子达到16%,反映该地区人类取用水消耗量较大。从年际分析,整个流域在70年代的影响因子要高于其它年段,呈现出越是枯水年段人类用水影响程度越大的现象。  相似文献   
2.
 根据1970—2004年的实测水文资料,采用水文学及统计方法分析了汾河水库控制流域的径流量变化及其原因,同时还计算了不同重现期的控制站的洪峰设计值。结果表明,入库控制站静乐和上静游站丰、平和枯水水平年不同步,在20世纪70和80年代发生丰水和平水年份比较多,在90年代后枯水年份比较多,多干旱年份。水库控制流域洪水主要集中在7月、8月,同时极端洪涝和干旱事件出现的频次增多。以静乐站为代表分析降水对径流变化的结果表明,高强度降水在量级和次数上存在波动变化的态势,年径流的时序变化主要是受年降水量的变化影响。  相似文献   
3.
长江干流日径流序列的多重分形特征   总被引:3,自引:1,他引:2       下载免费PDF全文
基于长江干流寸滩、宜昌和大通三个主要控制水文站多年的日径流资料,运用多重分形消除趋势波动分析 (MF-DFA)等方法,识别长江流域不同空间尺度上径流序列的多重分形特征,并采用推广的乘积阶次模型,对多重分形谱进行拟合。结果表明: (1)长江干流的日径流序列具有自相似的多重分形特征,该多重分形特征是由序列内在的长程相关性引起的;(2)长江干流日径流序列的多重分形谱可用推广的乘积阶次模型进行描述,模型拟合的参数a、b可作为该水文站点的特征参数,能够对降雨径流模型有效地进行检测;(3)长江干流日径流变化的复杂程度具有空间差异性。下游大通水文站径流序列的奇异性大于上游两站点,其径流变化过程更为复杂,而上游两站奇异性相差不大。造成三个站点径流过程变化复杂程度差异的主要原因,包括集水面积、来水组成、降水特点和下垫面状况等。  相似文献   
4.
塔里木河三源流区气候变化对径流量的影响   总被引:5,自引:3,他引:2  
结合对近50年塔里木河源流区气象、水文资料的分析,探讨了过去半个世纪塔里木河源流区气候变化及其对河川径流的影响。研究结果显示,在过去50年里,塔里木河三源流径流流量总体呈现增加的趋势,期间有波动过程;对影响径流变化的气温、降水和蒸发等因子分析发现,降水量变化对塔里木河径流量变化影响最为显著,而温度的升高,加速了山区冰雪资源的消融,加大了冰雪融水对径流量的补给,但同时导致蒸发量增大,增加了地表淡水资源的消耗,对山区来水量的增大起到一定的削弱作用。  相似文献   
5.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
6.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   
7.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号