首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1922篇
  免费   369篇
  国内免费   204篇
测绘学   34篇
大气科学   206篇
地球物理   635篇
地质学   419篇
海洋学   921篇
天文学   19篇
综合类   126篇
自然地理   135篇
  2024年   2篇
  2023年   21篇
  2022年   36篇
  2021年   79篇
  2020年   81篇
  2019年   69篇
  2018年   50篇
  2017年   88篇
  2016年   87篇
  2015年   79篇
  2014年   116篇
  2013年   212篇
  2012年   66篇
  2011年   117篇
  2010年   87篇
  2009年   130篇
  2008年   131篇
  2007年   133篇
  2006年   122篇
  2005年   99篇
  2004年   97篇
  2003年   68篇
  2002年   74篇
  2001年   63篇
  2000年   56篇
  1999年   53篇
  1998年   37篇
  1997年   42篇
  1996年   42篇
  1995年   24篇
  1994年   24篇
  1993年   26篇
  1992年   19篇
  1991年   10篇
  1990年   15篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2495条查询结果,搜索用时 15 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  相似文献   
3.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
4.
The ecosystem services provided by forests modulate runoff generation processes, nutrient cycling and water and energy exchange between soils, vegetation and atmosphere. Increasing atmospheric CO2 affects many linked aspects of forest and catchment function in ways we do not adequately understand. Global levels of atmospheric CO2 will be around 40% higher in 2050 than current levels, yet estimates of how water and solute fluxes in forested catchments will respond to increased CO2 are highly uncertain. The Free Air CO2 Enrichment (FACE) facility of the University of Birmingham's Institute of Forest Research (BIFoR) is the only FACE in mature deciduous forest. The site specializes in fundamental studies of the response of whole ecosystem patches of mature, deciduous, temperate woodland to elevated CO2 (eCO2). Here, we describe a dataset of hydrological parameters – seven weather parameters at each of three heights and four locations, shallow soil moisture and temperature, stream hydrology and CO2 enrichment – retrieved at high frequency from the BIFoR FACE catchment.  相似文献   
5.
In 1994, a network of small catchments (GEOMON) was established in the Czech Republic to determine input–output element fluxes in semi-natural forest ecosystems recovering from anthropogenic acidification. The network consists from 16 catchments and the primary observations of elements fluxes were complemented by monitoring of biomass stock, element pools in soil and vegetation, and the main water balance components. Over last three decades, reductions of SO2, NOx and NH3 emissions were followed by sulphur (S) and nitrogen (N) deposition reductions of 75% and 30%, respectively. Steeper declines of strong acid anion concentrations compared to cations (Ca, Mg, Na, K, NH4) in precipitation resulted in precipitation pH increase from 4.5 to 5.2 in bulk precipitation and from 4.0 to 5.1 in spruce throughfall. Stream chemistry responded to changes in deposition: S leaching declined. However at majority of catchments soils acted as a net source of S to runoff, delaying recovery. Stream pH increased at acidic streams (pH < 6) and aluminium concentration decreased. Stream nitrate (NO3) concentration declined by 60%, considerably more than N deposition. Stream NO3 concentration was tightly positively related to stream total dissolved nitrogen to total phosphorus (P) ratio, suggesting the role of P availability on N retention. Trends in dissolved organic carbon fluxes responded to both acidification recovery and to runoff temporal variation. An exceptional drought occurred between 2014 and 2019. Over this recent period, streamflow decreased by ≈ 40% on average compared to 1990s, due to the increases of soil evaporation and vegetation transpiration by ≈ 30% and declines in precipitation by ≈ 15% on average across the elevational gradient. Sharp decreases of stream runoff at catchments <650 m a.s.l. corresponded to areas of recent forest decline caused by bark beetle infestation on drought stressed spruce forests. Understanding of the interactions among legacies of acidification and eutrophication, drought effects on the water cycle and forest disturbance dynamics is requisite for effective management of forested ecosystems under anthropogenic influence.  相似文献   
6.
李永军  陈科艺 《气象科技》2019,47(6):997-1005
利用地面气象常规观测资料、区域自动站观测资料、雷达及卫星资料和NCEP 1°×1°的逐6h再分析资料,对2018年5月13日攀西地区南部的飑线天气过程的形成机制进行分析。结果表明:飑线发生在高空槽前,高空槽逐渐东移推动冷性气流沿背风坡东移,然后与前方低层暖空气汇合抬升形成对流;露点锋触发了飑线天气过程的形成;产生飑线天气区域的大气具有上干下湿、不稳定能量高、垂直风切变强、高层风速大和形成之前存在逆温层的特点;高空急流和动量下传对飑线的发生和加强具有促进作用;地形对飑线的形成和天气现象的分布有影响。  相似文献   
7.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
8.
维生素D(VD)是一类具有抗佝偻病作用的类固醇激素,其中维生素D3(VD3)是VD在动物体内的主要存在形式。作为生命活动必不可少的一类物质,VD发挥着广泛且重要的生理学作用。VD在动物体内的代谢过程及相关的代谢酶具有较高的进化保守性,同时也受到多种因素的调控影响。由于鱼类在生活环境方面与陆生脊椎动物存在显著差异,VD在鱼类中的合成代谢及生理功能与高等动物也存在一定的区别。本文主要概述了鱼类VD3的主要来源以及需求量的研究,总结了近年来鱼类维生素D受体(VDR)、VD3代谢调控及其生理功能的研究进展,比较了鱼类和陆生高等动物在VD来源、代谢以及VDR等方面的差异,并对水生动物VD的未来研究方向进行了展望。  相似文献   
9.
遵义市冬末初春两次寒潮降雪天气过程对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用Micaps常规观测资料、NCEP/NCAR再分析资料、区域站加密观测资料,对遵义市2016年3月8—9日(过程Ⅰ)和2017年2月21—22日(过程Ⅱ)的两次寒潮降雪天气过程进行对比分析。结果表明:(1)500 h Pa横槽转竖和低槽东移是两次寒潮爆发的重要引导系统,过程Ⅰ属于横槽转竖型寒潮天气过程,过程Ⅱ寒潮属小槽发展型。(2)地面冷高压中心强度(冷源)及南下速度是预报寒潮的关键。(3)700 h Pa切变影响与降雪时段对应较好,在今后降雪预报中应作为重要影响系统加以关注。(4)湿层深厚,整层水汽含量高为降雪的显著特征。(5)有无融化层和融化层厚薄应作为降雪预报温度条件的关注重点。  相似文献   
10.
目前资料对柳江盆地上石盒子组沉积特征的描述比较简略,针对这种情况,本团队详细考察了柳江村小北山露头,以期揭示上石盒子组更多的沉积特征。通过对3条剖面进行分层,并详细描述岩层的岩性特征和沉积构造,认为该露头发育有侧积体和典型的牛轭湖,为曲流河沉积体系。根据河相经验公式算出其弯曲度大于1. 7,为高弯度曲流河。在演化过程中,曲流河的规模逐渐变小,同时经历了频繁改道和迁移。此项研究对于实习教学和河流构型研究均有参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号