首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33994篇
  免费   7268篇
  国内免费   6329篇
测绘学   2473篇
大气科学   4014篇
地球物理   7163篇
地质学   17560篇
海洋学   6253篇
天文学   307篇
综合类   2510篇
自然地理   7311篇
  2024年   60篇
  2023年   433篇
  2022年   1165篇
  2021年   1498篇
  2020年   1413篇
  2019年   1348篇
  2018年   1332篇
  2017年   1358篇
  2016年   1326篇
  2015年   1515篇
  2014年   1940篇
  2013年   2107篇
  2012年   2143篇
  2011年   2299篇
  2010年   1934篇
  2009年   2237篇
  2008年   2160篇
  2007年   2452篇
  2006年   2472篇
  2005年   2197篇
  2004年   1982篇
  2003年   1789篇
  2002年   1591篇
  2001年   1337篇
  2000年   1141篇
  1999年   1004篇
  1998年   868篇
  1997年   776篇
  1996年   665篇
  1995年   603篇
  1994年   539篇
  1993年   447篇
  1992年   368篇
  1991年   284篇
  1990年   181篇
  1989年   212篇
  1988年   117篇
  1987年   82篇
  1986年   48篇
  1985年   46篇
  1984年   28篇
  1983年   19篇
  1982年   10篇
  1981年   10篇
  1980年   8篇
  1979年   11篇
  1978年   14篇
  1977年   6篇
  1971年   3篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  相似文献   
2.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
3.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
4.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
5.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
6.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
7.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
8.
Understanding the hydrological processes of colloids within the karst vadose zone is vital to the security of karst groundwater and providing appropriate paleohydrological explanations of colloid-facilitated metals in speleothem. This study addresses the mobilization mechanisms driving colloidal organic matter (COM) transport in the karst vadose zone using a 15-year long monthly monitoring dataset from a cave drip point (HS4) in Heshang Cave, Qingjiang Valley, China. Variations in COM concentrations were reported as the fluorescence difference values of raw and filtered (<0.22 μm) samples at an excitation wavelength of 320 nm and emission wavelength of ~400 nm. A fluorescence humification index (HIX) lower than 0.8 and an autochthonous index (BIX) higher than 1.2 indicated that the origin of COM was mainly from the karst vadose zone, rather than the soil zone. The COM concentration varied from 0.001 to 0.038 Raman Unit (RU), with evident seasonal fluctuations. Rising limbs for COM values occurred prior to rising limbs within a dripwater hydrograph; moreover, the COM peak values corresponding to the beginning of the increasing hydrograph generally suggested that the mobilization of COM reflected the movement of the air–water interface (AWI) in the karst vadose zone rather than rainfall intensity or flow velocity. COM peak values were positively correlated with the antecedent drying duration and negatively correlated with HIX values. These phenomena may be explained by the increased amount of organic matter that was aggregated and absorbed on the surface of carbonate in the karst vadose zone during a longer drying duration. Moreover, the longer drying duration was also beneficial to autochthonous biological activity, which subsequently decreased the HIX value of the organic matter in the karst vadose zone. The movement of AWI and the drying duration are both controlled by the outside weather conditions. This study is therefore conducive to evaluating the security of karst groundwater in response to climate change, and challenges prevailing paleoclimate interpretations of colloid-facilitated metal abundance timeseries reported from speleothems.  相似文献   
9.
2019年黑龙江省完成"一带一路"地震科学台阵项目中台址勘选工作,基于科学台阵中136个台址的地面运动噪声数据,通过计算不同频段范围内背景噪声记录的加速度功率谱密度,研究不同环境噪声下科学台阵记录数据的地噪声特征及其台基响应。结果表明:黑龙江西北和东南部地区地面运动噪声水平低,观测环境较好;中部和东北部地区噪声水平较高,大庆地区尤为严重。勘选结果真实反映了黑龙江区域内的背景噪声分布,使我们对本区域地噪声水平和干扰因素有了新的认识。  相似文献   
10.
申元村  程维明 《地理研究》2019,38(2):348-356
地球表层是人类生存的家园,地表形态直接或间接影响人类生活、生产和社会经济活动。地貌学和生态学是与人类关系密切的学科。自然实体与人文实体都依附于地表,研究生态与地貌关系的科学便统称为生态地貌学,直接影响人类生存选址、生存保障、生产方向、产业布局、交通、城乡建设等,因此,生态地貌学是保障人类生存与社会经济可持续协调发展的基础性与应用性极强的学科,是国家实现生态文明战略的基础性学科。生态地貌学研究生态与地貌两者相互作用形成的生态地貌综合实体,学科体系包含地貌基础学科、生态基础学科及其相互作用形成的生态地貌学科。生态地貌学科下又包含生态地貌区划学、生态地貌类型学、生态地貌资源学、生态地貌岩态学、生态地貌遥感与GIS技术、生态地貌管理与规划等分支学科,是目前仍然属于探索性的学科。生态地貌结构可表达为:由地貌与生物成分、类型、区域组合、数量构成及其空间排列组合方式。从生态地貌结构理论出发,对其功能进行系统梳理,主要可以归纳为区域结构、类型结构、资源结构、岩态结构等多种类型。不同结构类型具有不同的功能,主要功能有提升中国自然地理区划质量与空间定位功能、生态评估与生态设计功能、土地利用评估与利用结构调整功能、地质地貌灾害成因和防灾减灾对策功能等。故该研究意在实现生态地貌功能间协调、高效可持续,通过对各功能进行整合,形成功能体系,并从调控管理上提出了提升功能能力的设计路径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号