首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  完全免费   34篇
  地球物理   186篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   9篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   53篇
  2012年   3篇
  2011年   5篇
  2010年   9篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有186条查询结果,搜索用时 46 毫秒
1.
青海湖水量平衡分析与水资源优化配置研究   总被引:18,自引:4,他引:14       下载免费PDF全文
在充分收集有关资料的基础上研究青海湖1959-2000年间降水径流蒸发湖泊水位地下水补给量的动态变化建立水量平衡分析方程.青海湖水位在波动中持续下降42年来年平均水位累计下降了 3.32 m平均每年下降了0.079 m近年来下降的幅度减小. 同时青海湖储水量不断减少而湖区降水呈增加的趋势河川径流量地下水的入湖补给量 蒸发量呈现下降的趋势. 根据青海湖水平衡分析计算结果预测2010年青海湖流域耗水量将达1.27108m3为维护生态平衡和社会经济持续发展需要跨流域调水量引大济湖4.1108m3.  相似文献
2.
Impact of climate change on water resources in southern Taiwan   总被引:17,自引:0,他引:17  
This study investigates the impact of climate change on water resources in southern Taiwan. The upstream catchment of Shin-Fa Bridge station in the Kao-Pen Creek basin was the study area chosen herein. The historical trends of meteorological variables, such as mean daily temperature, mean daily precipitation on wet days, monthly wet days, and the transition probabilities of daily precipitation occurrence in each month, at the Kao-Hsiung meteorological station, near the catchments were detected using a non-parametric statistical test. The trends of these meteorological variables were then employed to generate runoff in future climatic conditions using a continuous rainfall–runoff model. The analytical results indicate that the transition probabilities of daily precipitation occurrence significantly influence precipitation generation, and generated runoff for future climatic conditions in southern Taiwan was found to rise during the wet season and decline during the dry season.  相似文献
3.
Prediction in a socio-hydrological world   总被引:12,自引:12,他引:0  
Water resource management involves public investments with long-ranging impacts that traditional prediction approaches cannot address. These are increasingly being critiqued because (1) there is an absence of feedbacks between water and society; (2) the models are created by domain experts who hand them to decision makers to implement; and (3) they fail to account for global forces on local water resources. Socio-hydrological models that explicitly account for feedbacks between water and society at multiple scales and facilitate stakeholder participation can address these concerns. However, they require a fundamental change in how we think about prediction. We suggest that, in the context of long-range predictions, the goal is not scenarios that present a snapshot of the world at some future date, but rather projection of alternative, plausible and co-evolving trajectories of the socio-hydrological system. This will both yield insights into cause–effect relationships and help stakeholders identify safe or desirable operating space.  相似文献
4.
In this study, a two-stage fuzzy chance-constrained programming (TFCCP) approach is developed for water resources management under dual uncertainties. The concept of distribution with fuzzy probability (DFP) is presented as an extended form for expressing uncertainties. It is expressed as dual uncertainties with both stochastic and fuzzy characteristics. As an improvement upon the conventional inexact linear programming for handling uncertainties in the objective function and constraints, TFCCP has advantages in uncertainty reflection and policy analysis, especially when the input parameters are provided as fuzzy sets, probability distributions and DFPs. TFCCP integrates the two-stage stochastic programming (TSP) and fuzzy chance-constrained programming within a general optimization framework. TFCCP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. TFCCP is applied to a water resources management system with three users. Solutions from TFCCP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions were generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of stream flows, α-cut levels and fuzzy dominance indices.  相似文献
5.
In this study, a multistage scenario-based interval-stochastic programming (MSISP) method is developed for water-resources allocation under uncertainty. MSISP improves upon the existing multistage optimization methods with advantages in uncertainty reflection, dynamics facilitation, and risk analysis. It can directly handle uncertainties presented as both interval numbers and probability distributions, and can support the assessment of the reliability of satisfying (or the risk of violating) system constraints within a multistage context. It can also reflect the dynamics of system uncertainties and decision processes under a representative set of scenarios. The developed MSISP method is then applied to a case of water resources management planning within a multi-reservoir system associated with joint probabilities. A range of violation levels for capacity and environment constraints are analyzed under uncertainty. Solutions associated different risk levels of constraint violation have been obtained. They can be used for generating decision alternatives and thus help water managers to identify desired policies under various economic, environmental and system-reliability conditions. Besides, sensitivity analyses demonstrate that the violation of the environmental constraint has a significant effect on the system benefit.  相似文献
6.
Modelling blue and green water resources availability in Iran   总被引:6,自引:0,他引:6  
Knowledge of the internal renewable water resources of a country is strategic information which is needed for long‐term planning of a nation's water and food security, among many other needs. New modelling tools allow this quantification with high spatial and temporal resolution. In this study we used the program Soil and Water Assessment Tool (SWAT) in combination with the Sequential Uncertainty Fitting program (SUFI‐2) to calibrate and validate a hydrologic model of Iran based on river discharges and wheat yield, taking into consideration dam operations and irrigation practices. Uncertainty analyses were also performed to assess the model performance. The results were quite satisfactory for most of the rivers across the country. We quantified all components of the water balance including blue water flow (water yield plus deep aquifer recharge), green water flow (actual and potential evapotranspiration) and green water storage (soil moisture) at sub‐basin level with monthly time‐steps. The spatially aggregated water resources and simulated yield compared well with the existing data. The study period was 1990–2002 for calibration and 1980–1989 for validation. The results show that irrigation practices have a significant impact on the water balances of the provinces with irrigated agriculture. Concerning the staple food crop in the country, 55% of irrigated wheat and 57% of rain‐fed wheat are produced every year in water‐scarce regions. The vulnerable situation of water resources availability has serious implications for the country's food security, and the looming impact of climate change could only worsen the situation. This study provides a strong basis for further studies concerning the water and food security and the water resources management strategies in the country and a unified approach for the analysis of blue and green water in other arid and semi‐arid countries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献
7.
Planning of water resources systems is often associated with many uncertain parameters and their interrelationships are complicated. Stochastic planning of water resources systems is vital under changing climate and increasing water scarcity. This study proposes an interval-parameter two-stage optimization model (ITOM) for water resources planning in an agricultural system under uncertainty. Compared with other optimization techniques, the proposed modeling approach offers two advantages: first, it provides a linkage to pre-defined water policies, and; second, it reflects uncertainties expressed as probability distributions and discrete intervals. The ITOM is applied to a case study of irrigation planning. Reasonable solutions are obtained, and a variety of decision alternatives are generated under different combinations of water shortages. It provides desired water-allocation patterns with respect to maximum system benefits and highest feasibility. Moreover, the modeling results indicate that an optimistic water policy corresponding to higher agricultural income may be subject to a higher risk of system-failure penalties; while, a too conservative policy may lead to wastage of irrigation supplies.  相似文献
8.
太湖贡湖湾水生植被分布现状(2012年)   总被引:5,自引:2,他引:3       下载免费PDF全文
贡湖湾是无锡和苏州两市的重要水源地,随着近些年太湖水质的急速恶化,贡湖湾蓝藻暴发现象日益严重,危及饮水安全.为提供贡湖湾水资源管理的理论依据,于2012年开展贡湖湾水生植被野外调查.对8个断面进行为期5天的调查,结果表明:(1)共记录贡湖湾水生植物20科27属34种,单子叶植物和沉水植物分别为优势分类群和生态型;(2)贡湖湾水生植被分布区面积占总水域面积的45.35%,为典型半草型湖泊;(3)共有8种水生植物群落分布,其中马来眼子菜群落分布区面积和生物量最大;(4)贡湖湾水生植被总体表现出北部无水生植被分布,东部生物量高、群落及物种组成复杂,其他区域生物量小、群落组成单一的分布格局.水质恶化和插网捕鱼对贡湖湾水生植被分布现状存在影响,过度清淤可能是造成北部水域裸露的原因.结合贡湖湾水生植被分布现状分析结果,建议在贡湖湾水生植被管理中要开展北部裸水区植被修复,促进湾口区域马来眼子菜群落生长,加强对“引江济太”工程上游来水和贡湖湾水质的监测,并注重外来入侵植物尤其是水盾草群落的监测.  相似文献
9.
鄱阳湖区水资源综合开发与治理   总被引:5,自引:1,他引:4       下载免费PDF全文
以鄱阳湖区自然条件为基础,分析了湖区水资源开发利用现状,水体污染现状以及水旱灾害,并对湖区2000年与2010年的需水量及水质污染进行了预测,最后,对整个湖区水资源的综合开发治理作了较全面的规划。  相似文献
10.
ABSTRACT

We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter alia, on the capability of scientists to deliver a new, coherent and technical vision for the future development of water systems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号