首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23810篇
  免费   5228篇
  国内免费   4147篇
测绘学   1049篇
大气科学   2640篇
地球物理   5931篇
地质学   11961篇
海洋学   4205篇
天文学   554篇
综合类   1506篇
自然地理   5339篇
  2024年   44篇
  2023年   345篇
  2022年   828篇
  2021年   1078篇
  2020年   1015篇
  2019年   975篇
  2018年   908篇
  2017年   978篇
  2016年   924篇
  2015年   1103篇
  2014年   1390篇
  2013年   1733篇
  2012年   1455篇
  2011年   1688篇
  2010年   1470篇
  2009年   1571篇
  2008年   1634篇
  2007年   1724篇
  2006年   1677篇
  2005年   1414篇
  2004年   1333篇
  2003年   1199篇
  2002年   968篇
  2001年   860篇
  2000年   793篇
  1999年   628篇
  1998年   554篇
  1997年   489篇
  1996年   414篇
  1995年   396篇
  1994年   383篇
  1993年   279篇
  1992年   226篇
  1991年   181篇
  1990年   125篇
  1989年   121篇
  1988年   72篇
  1987年   43篇
  1986年   31篇
  1985年   38篇
  1984年   21篇
  1983年   16篇
  1982年   5篇
  1981年   18篇
  1980年   11篇
  1979年   7篇
  1978年   14篇
  1976年   1篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  相似文献   
2.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
3.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
4.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
5.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
6.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
7.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
8.
Understanding the hydrological processes of colloids within the karst vadose zone is vital to the security of karst groundwater and providing appropriate paleohydrological explanations of colloid-facilitated metals in speleothem. This study addresses the mobilization mechanisms driving colloidal organic matter (COM) transport in the karst vadose zone using a 15-year long monthly monitoring dataset from a cave drip point (HS4) in Heshang Cave, Qingjiang Valley, China. Variations in COM concentrations were reported as the fluorescence difference values of raw and filtered (<0.22 μm) samples at an excitation wavelength of 320 nm and emission wavelength of ~400 nm. A fluorescence humification index (HIX) lower than 0.8 and an autochthonous index (BIX) higher than 1.2 indicated that the origin of COM was mainly from the karst vadose zone, rather than the soil zone. The COM concentration varied from 0.001 to 0.038 Raman Unit (RU), with evident seasonal fluctuations. Rising limbs for COM values occurred prior to rising limbs within a dripwater hydrograph; moreover, the COM peak values corresponding to the beginning of the increasing hydrograph generally suggested that the mobilization of COM reflected the movement of the air–water interface (AWI) in the karst vadose zone rather than rainfall intensity or flow velocity. COM peak values were positively correlated with the antecedent drying duration and negatively correlated with HIX values. These phenomena may be explained by the increased amount of organic matter that was aggregated and absorbed on the surface of carbonate in the karst vadose zone during a longer drying duration. Moreover, the longer drying duration was also beneficial to autochthonous biological activity, which subsequently decreased the HIX value of the organic matter in the karst vadose zone. The movement of AWI and the drying duration are both controlled by the outside weather conditions. This study is therefore conducive to evaluating the security of karst groundwater in response to climate change, and challenges prevailing paleoclimate interpretations of colloid-facilitated metal abundance timeseries reported from speleothems.  相似文献   
9.
地温变化在气候反馈效应中起着重要作用, 理解地温及其与影响因素之间的时空关系对预测全球温度变化至关重要。利用1998 - 2017年石羊河流域的逐日常规气象观测资料, 采用小波分析结合BP(Back Propagation)神经网络构建了石羊河流域夏季地温预报模型, 结果表明: 日平均地温预测效果在不同站点均为最佳, 其中预测值和观测值的相关系数均大于0.87, 3 ℃以内的预测概率均大于84%。其中, 民勤地区地温预测效果最好, 预测值和观测值的相关系数达到0.91, 3 ℃以内的预测概率达到86%。日最高地温的预测值与观测值的相关系数高于0.8, 但误差平方和、 标准差较大。永昌地区日最高地温的模拟效果最好, 3 ℃以内的预测概率达到83%。日最低地温的预测与观测值的平均相关系数高于0.66, 3 ℃以内的预报概率高于83%, 但预测值略低。其中, 武威地区日最低地温的预测效果最好, 预测值与观测值的相关系数为0.72, 3 ℃以内的预测概率达到94%。研究成果可为有效弥补干旱、 半干旱区地温观测资料缺失和探讨其与局地气候的关系提供一些参考。  相似文献   
10.
长江经济带包括上海、江苏、浙江、安徽、江西、湖北、湖南、四川、重庆、云南和贵州11个省(直辖市),是我国重要的经济发展区域,油气资源长期安全可靠的储存对于该区经济可持续发展至关重要。基于长江经济带战略油气储库基地建设规划布局的需求,在充分收集利用前人地质调查和研究成果的基础上,对区内岩盐矿床进行了综合研究和分析,建立了层次结构模型,评价了盐穴油气储库建设的可行性。长江经济带除上海和贵州外,其余9省(直辖市)均发现了大量的岩盐矿床,主要成盐时代为震旦纪、三叠纪、白垩纪和古近纪; 成盐盆地范围0.29~10 000 km2,盐层累计厚度3~1 050 m,矿体埋藏深度40~3 400 m; 矿石中NaCl含量20%~99.86%; 矿体顶底板及夹层岩石主要为泥岩、粉砂质泥岩及泥质粉砂岩。地质调查揭示出区内大部分地下盐穴远离地震活动带,构造稳定,因此可以改造为石油储库。考虑储气库的密闭性及安全性,江苏金坛盆地等6个盐矿埋深适中,建穴地质条件较好,适合建造储气盐穴库; 江苏淮安等14个盆地的局部地区适合建造天然气储库; 重庆垫江等11个盐矿埋深较大,可以建造储气盐穴库,但建造成本较高; 湖南澧县等21个盐矿埋藏偏浅,应选择更深部的盐层空间建造油气储库。建议在江苏金坛、淮安、赵集和丰县,江西清江和会昌,湖北云应、天门小板和潜江等盐矿地区优先开发利用盐穴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号