首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   186篇
  国内免费   55篇
测绘学   79篇
大气科学   46篇
地球物理   253篇
地质学   167篇
海洋学   165篇
天文学   1篇
综合类   91篇
自然地理   616篇
  2024年   3篇
  2023年   25篇
  2022年   41篇
  2021年   55篇
  2020年   48篇
  2019年   51篇
  2018年   41篇
  2017年   47篇
  2016年   52篇
  2015年   51篇
  2014年   50篇
  2013年   49篇
  2012年   86篇
  2011年   104篇
  2010年   64篇
  2009年   86篇
  2008年   113篇
  2007年   76篇
  2006年   94篇
  2005年   59篇
  2004年   70篇
  2003年   51篇
  2002年   25篇
  2001年   20篇
  2000年   14篇
  1999年   10篇
  1998年   9篇
  1997年   6篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有1418条查询结果,搜索用时 15 毫秒
1.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
2.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   
3.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   
4.
Peatland restoration practitioners are keen to understand the role of drainage via natural soil pipes, especially where erosion has released large quantities of fluvial carbon in stream waters. However, little is known about pipe-to-stream connectivity and whether blocking methods used to impede flow in open ditch networks and gullies also work on pipe networks. Two streams in a heavily degraded blanket bog (southern Pennines, UK) were used to assess whether impeding drainage from pipe networks alters the streamflow responses to storm events, and how such intervention affects the hydrological functioning of the pipe network and the surrounding peat. Pipeflow was impeded in half of the pipe outlets in one stream, either by inserting a plug-like structure in the pipe-end or by the insertion of a vertical screen at the pipe outlet perpendicular to the direction of the predicted pipe course. Statistical response variable η2 showed the overall effects of pipe outlet blocking on stream responses were small with η2 = 0.022 for total storm runoff, η2 = 0.097 for peak discharge, η2 = 0.014 for peak lag, and η2 = 0.207 for response index. Both trialled blocking methods either led to new pipe outlets appearing or seepage occurring around blocks within 90 days of blocking. Discharge from four individual pipe outlets was monitored for 17 months before blocking and contributed 11.3% of streamflow. Pipe outlets on streambanks with headward retreat produced significantly larger peak flows and storm contributions to streamflow compared to pipe outlets that issued onto straight streambank sections. We found a distinctive distance-decay effect of the water table around pipe outlets, with deeper water tables around pipe outlets that issued onto straight streambanks sections. We suggest that impeding pipeflow at pipe outlets would exacerbate pipe development in the gully edge zone, and propose that future pipe blocking efforts in peatlands prioritize increasing the residence time of pipe water by forming surface storage higher up the pipe network.  相似文献   
5.
Reflecting internal catchment hydrological processes in hydrological models is important for accurate predictions of the impact of climate and land-use change on water resources. Characterizing these processes is however difficult and expensive due to their dynamic nature and spatio-temporal variability. Hydropedology is a relatively new discipline focusing on the synergistic integration of hydrology, soil physics and pedology. Hydropedological interpretations of soils and soil distribution can be used to characterize key hydrological processes, especially in areas with no or limited hydrometric measurements. Here we applied a hydropedological approach to reflect flowpaths through detailed routing in SWAT+ for a 157 ha catchment (Weatherley) in South Africa. We compared the hydropedological approach and a standard (no routing) approach against measured streamflow (two weirs) and soil water contents (13 locations). The catchment was treated as ‘ungauged’ and the model was not calibrated against hydrometric measurements in order to determine the direct contribution of hydropedology on modelling efficiency. Streamflow was predicted well without calibration (NSE > 0.8; R2 > 0.82) for both approaches at both weirs. The standard approach yielded slightly better streamflow predictions. The hydropedological approach resulted in considerable improvements in the simulation of soil water contents (R2 increased from 0.40 to 0.49 and PBIAS decreased from 40% to 20%). The routing capacity of SWAT+ as employed in the hydropedological approach reduced the underestimation of wetland water regimes drastically and resulted in a more accurate representation of the dominant hydrological processes in this catchment. We concluded that hydropedology can be a valuable source of ‘soft data’ to reflect internal catchment structure and processes and, potentially, for realistic calibrations in other studies, especially those conducted in areas with limited hydrometric measurements.  相似文献   
6.
遥感技术已被广泛应用于生态环境调查与研究。为获取西昌市近30 a生态环境演化趋势,利用1989年、2000年、2010年的专题绘图仪(Thematic Mapper,TM)遥感影像和2018年的陆地成像仪(Operational Land Imager,OLI)遥感影像,通过图像处理、目视解译和野外验证等方法,获得了西昌市1989—2018年的土地利用/覆盖数据,并对林地、草地和湿地的动态变化特征进行了研究。结果表明: 1989—2018年,西昌市林地、湿地和草地面积持续增加,生态环境持续向好; 林地主要分布于安宁河谷和邛海盆地四周山地,在牦牛山、螺髻山一带形成主要林区; 草地主要呈星岛状分布于牦牛山、螺髻山一带林地之间; 湿地以河流湿地与湖泊湿地为主,主要沿安宁河及邛海分布。但仍存在一些问题: 森林存在针叶化现象较普遍、树种单一等问题,需要重点加强林区火灾防范; 草地多数呈零星片状分布,不具有完整的系统结构和良好的功能,多数草地承载力和生产力较低,不宜大规模开发利用,应通过封山育林促使其向森林转化; 湿地分布也比较局限,需要着力予以保护。研究成果可为西昌市生态保护修复措施的制定及经济社会可持续发展提供科学依据。  相似文献   
7.
随着现代工业的发展,城市黑臭河道问题日趋严重,严重影响了城市形象、生态环境和居民身心健康。利用多水塘活水链人工湿地技术净化江苏常州永胜河河水水质。监测结果显示:该技术使水体总氮浓度削减了92.0%、总磷浓度削减了82.9%,处理后的水体总氮、总磷含量达到地表IV类水标准。项目年处理水量约30万t,每年以较低的成本(平均水处理费用约为0.03元/t),削减总氮、总磷和氨氮量分别为1496.6 kg、176.0 kg和1408.6 kg。通过引植多种浮叶植物、挺水植物、沉水植物,该湿地修复工程为当地营造了优美的湿地景观。多水塘活水链人工湿地是集经济效益、生态效益、环境效益于一体的新型水体生态治理技术,为我国城镇黑臭河道治理提供了一条新的途径。  相似文献   
8.
通过改进Tessier连续提取法对贵州草海黑颈鹤栖息地不同水位梯度下沉积物汞(Hg)、砷(As)形态及生态风险进行了研究.结果表明,草海湿地沉积物中Hg含量在0.45~1.51-mg/kg之间,超过国家土壤环境质量农用地土壤风险管控标准;形态组成上,残渣态汞(Res-Hg)有机结合态汞(Org-Hg)碳酸盐结合态(Car-Hg)铁锰氧化态(Fe-O-Hg)可交换态(Ex-Hg),不同水位梯度下含量和赋存形态在不同区域不一致.As含量在16.4~23.8-mg/kg之间,形态依次为残渣态砷(Res-As)有机结合态砷(Org-As)铁锰氧化态砷(Fe-O-As)碳酸盐结合态砷(Car-As)可交换态砷(Ex-As).-As含量与贵州省土壤背景值持平,随着水位梯度的抬升,其总量呈增加趋势,残渣态占比逐步增多,性质逐渐稳定.采用地积累指数(I_(geo))、潜在生态风险指数(E_r~i)、风险评价编码法(RAC)对Hg、As的危害程度进行分析表明,基于草海较高Hg环境背景值,Hg整体污染风险较高,As处于低水平的污染风险等级且对环境影响较小.该研究揭示了不同水位梯度下Hg、As总量及形态分布特征,对草海湿地水位抬升恢复湿地提供了参考.  相似文献   
9.
对贵州草海湿地4种水位梯度下(农田区、过渡区、浅水区和深水区)表层土壤(0~10 cm)碳、氮、磷含量及其生态化学计量比进行研究,以期揭示草海湿地不同水位梯度下土壤碳、氮、磷生态化学计量比的分布特征及其影响因素.结果表明:土壤总有机碳(TOC)、总氮(TN)及总磷(TP)含量在不同水位梯度之间均差异显著,由过渡区至深水区,土壤TOC及TN含量均呈递增趋势,而TP含量呈先降低后增加的趋势;农田区土壤TN含量显著高于浅水区,但深水区土壤TP含量显著低于农田区.不同水位梯度土壤碳氮比(C/N)、碳磷比(C/P)和氮磷比(N/P)也存在显著差异,由过渡区至深水区,土壤C/P和N/P均呈递增趋势,而C/N呈先增加后降低的趋势;与过渡区相比,农田区土壤C/N、C/P和N/P总体偏低.相关性分析表明:土壤C/N、C/P和N/P的空间分布与土壤TOC、TN、含水量等理化性质有关.可见,草海湿地水位变化对土壤TOC、TN和TP含量以及C/N、C/P及N/P的空间分布具有显著影响,且水位升高有利于增强土壤碳、氮、磷的固存潜力.  相似文献   
10.
滨海湿地是地球上十分重要的一类生态系统, 可为人类社会提供诸如调节气候、降解污染、碳汇氮汇等众多生态服务功能。近年来, 由于气候变化和围填海等开发活动的影响, 我国滨海湿地面积锐减, 功能退化, 面临多种生态问题。为应对滨海湿地退化及日益凸显的生态环境问题, 滨海湿地保护和修复工作逐渐受到重视, 滨海湿地生态修复工程项目的数量和规模也随之急剧增加。滨海湿地生态修复技术规范对滨海湿地生态修复工作具有重要意义, 然而我国滨海湿地生态修复领域规范体系尚不完善, 导致滨海湿地生态修复项目实施无序以及生态修复成效低等问题。本文全面搜集了我国滨海湿地生态修复领域规范, 对检索到的规范进行分类统计与分析, 从而揭示其存在的问题, 主要包括规范体系系统性不足、生态修复理念滞后、规范之间缺乏协调性、规范可操作性差、规范更新迟滞等。针对存在的问题提出了相应的对策建议, 为完善我国滨海湿地生态修复领域规范体系、不断推进我国生态文明建设进程提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号