首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   12篇
  国内免费   18篇
地球物理   1篇
地质学   44篇
  2023年   4篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
张旗  朱月琴  焦守涛 《地质通报》2019,38(12):1939-1942
<正>地质学的研究现状如何?每个人有不同的标准。不可否认,地学研究已经取得了很多的成绩,但是不能津津乐道于目前的成绩,应当从更深层次去思考,从更高的境界去发现存在的问题和可能的危机。地质学天天在进步,这是毫无疑问的,但是,地质学的进步是非常缓慢的,相比大多数其他学科,地质学缺少创新的理论发现。  相似文献   
2.
全球N-MORB和E-MORB分类方案对比   总被引:3,自引:2,他引:1  
N-MORB与E-MORB是大洋中脊玄武岩常用的分类,二者地球动力学意义不同,备受学术界关注。对于N-MORB与E-MORB的分类识别标志,不同作者有不同的见解。MORB中可以根据Rb/Nd≤0.15、K/Ti≤0.11、(La/Sm)_N≤0.8、K_2O/TiO_20.09、ΔNb=1.74+lg(Nb/Y)-1.92lg(Zr/Y)0、(La/Sm)_N1、100K_2O/TiO_2≤13等7种指标来识别N-MORB,否则为E-MORB。究竟何种标志区分效果较好、比较适合大多数MORB的情况?学术界对此还较少有人讨论。为此,本文尝试利用大数据方法,采用全球全体扩张中心数据,对上述7种标志进行对比,发现(La/Sm)_N1的标志比较适合大多数MORB的情况。为此,我们将(La/Sm)_N1和(La/Sm)_N≥1的所有数据,选取La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ba、Cs、Hf、K、Nb、Pb、Rb、Sc、Sr、Ta、Th、Ti、Tl、U、V、Y、Zr等31个元素,利用两两元素对数比值进行投图,并计算85%置信度的置信椭圆交叠率,共得出36856个元素对组合,根据最小交叠率的原则,得出使用稀土元素La、Ce、Pr、Sm和其他高场强元素Nb、Zr、Hf、Y之间的比值关系判别效果较好。我们又利用以上得出的8种元素进行投图判定,发现以La为分子或以La/Hf、La/Zr元素比值做为区分标志可以得出更好的结果。因此建议考虑应用以上元素之间的相关关系共同判定N-MORB与E-MORB。  相似文献   
3.
国际地球科学联合会规定,碱性岩必须要有实际碱性矿物和/或似长石出现作为标志,但同时又同意TAS图中B区的玄武岩可以细分为碱性玄武岩和亚碱性玄武岩,取决于它们是否有标准矿物霞石出现。有标准矿物霞石出现的玄武岩归入碱性玄武岩,夏威夷岩有霞石标准矿物出现,是碱性玄武岩。碱性玄武岩和夏威夷岩分别出现在TAS图上的两个区(碱性玄武岩在B区,夏威夷岩在S1区),这是否存在概念上的混乱?早先学术界关于碱性和碱性岩的定义并不完美,由许多学者厘定的碱性-亚碱性的界线区分的不是拉斑与碱性系列,而是正常系列与粗玄岩系列。采用全球火山岩数据考察TAS图及碱性-亚碱性界线,发现碱性与碱性岩在术语的解释上存在瑕疵并提出解决的方案。  相似文献   
4.
花岗岩研究已有几百年的历史,可是花岗岩却没有形成自己独立的理论体系,也没有系统的花岗岩分类。花岗岩非常复杂,如何化繁为简,归纳出花岗岩最本质、最核心、最关键的标志,是一个非常棘手的任务。本文从哲学的角度出发,发现Sr和Yb可能是两个具有特殊含义的元素,特殊在于,它们不仅具有一般微量元素的特点,还具有特殊的功能,关键是它们的行为与花岗岩部分熔融后残留的变质矿物组成(如石榴石、斜长石等)有关。可能正是由于这个因素,才使Sr和Yb具有其他微量元素所不可匹敌的功能。本文按照Sr、Yb的排列组合提出了一个系统的花岗岩分类。对于花岗岩的地球动力学意义,学术界一直有争论,本文认为板块构造只能影响到大陆边缘,影响不到大陆内部。大陆演化研究最重要的任务是恢复大陆地质历史上的变化,如大陆地质演化不同时期曾经发生过的伸展和挤压(有的还有旋转,是挤压的副产品)、抬升和垮塌、造山与盆地、加厚与减薄等。如何识别上述变化及其过程,目前在方法学上还十分困难。依靠Sr、Yb及其与残留相平衡的理论则提出了一个方案,能够解决或大体解决上述问题。例如,埃达克岩(高Sr低Yb)代表加厚地壳,南岭型(非常低Sr高Yb)代表减薄地壳,浙闽型(低Sr高Yb)和广西型(高Sr高Yb)代表正常厚度的地壳,喜马拉雅型花岗岩(低Sr低Yb)代表中压与高压过渡的状况。因此,按照Sr和Yb的变化,即可大致恢复地质历史时期大陆地壳温压条件的变化,推测大陆地貌的变化(平原、丘陵、高原、山脉),探讨构造应力的变化(挤压导致加厚,伸展导致减薄)等。此外,不同类型花岗岩还与成矿有关,大体是:埃达克岩与金铜有关,南岭型与钨锡有关,喜马拉雅型与金有关,而浙闽型、广西型基本上是不利于成矿的。但是,实践中也有金铜钨锡在空间上共生的实例,则金铜与钨锡可能成因上或成矿时代上或控矿因素上有所不同。问题还很复杂,还有许多现象很难解释,笔者只是从宏观角度给出了一个思路,一个概念,很多细节并不清楚。研究表明,科学与哲学是密切相关的,哲学是科学的高度概括。本文尝试从哲学的角度对纷繁复杂的花岗岩进行归纳和简化,只是一个初步的尝试,还有更多问题需要认真研究。  相似文献   
5.
“岩浆热场”说及其成矿意义(下)   总被引:2,自引:0,他引:2  
上篇(张旗等[1])初步讨论了岩浆热场说的概念,本文为下篇,主要谈应用,探讨它与成矿作用的关系。研究表明,岩浆热场说对热液成矿作用有重要的意义,可能解决了岩浆热液成矿作用中许多很难解释和争议很大的问题:如钨锡与金铜为什么相伴的问题,矿床为什么大多是多金属成矿的问题,远离侵入体的夕卡岩成因问题,成矿为什么滞后于花岗岩的问题,为什么有些岩体成矿,有些岩体不成矿的问题,为什么大规模岩浆活动与大规模成矿作用息息相关的问题等。岩浆热场与煤和油气成藏有关是一个重要的发现。岩浆热场对煤和油气生成、运移、聚集的影响主要表现在加速烃源岩的热演化,使生油门限变浅,使烃源岩进入高成熟或过成熟,使烃源岩中残余有机质丰度降低。令人感兴趣的是,岩浆热场说还导出了一个"成矿组合"的概念,所谓成矿组合是指在一个或大或小的区域内,在岩浆活动集中的时间段范围内,在热场的统一作用下所形成和影响的所有矿床,不论成因和矿种,均属于一个成矿组合。它包括下述4种类型的矿床:岩浆热液矿床、热泉型矿床、层状热液矿床及生物有机质矿床等。岩浆热场说对于找矿也有启示:首先,我们可以从3个不同的级别上(大规模岩浆活动级别;成矿带、成矿区、矿集区级别;单个矿床级别)规划找矿布局;其次,在岩浆热场的统一影响下将金属矿床和非金属矿床、热液矿床和沉积矿床、无机质矿床和有机质矿床联系起来;第三,推进不同类型矿床研究的互补和交流。看来,岩浆热场对于成矿的作用是最值得学术界关注的,它也许可以改变我们目前对成矿作用的某些根深蒂固的认识,开拓出一个新的领域,推进矿床学研究进入新的时代。  相似文献   
6.
人类已进入大数据和人工智能时代,其成果已惠及千家万户。然而,大数据和人工智能技术在科学研究领域的应用却相形见绌,还未真正得到重视。大数据和人工智能是一种方法,一种思路,它不同于传统的科学研究方法和思路。在科学研究中,什么是大数据研究呢?符合大数据3个技术取向的是大数据研究,采用全数据模式的是大数据研究,从数据出发的是大数据研究。文中介绍了我们利用全球数据库数据厘定的玄武岩、安山岩、大陆边缘弧玄武岩(CAB)构造环境判别图,其中安山岩判别图填补了学术界的空白。玄武岩(MORB、OIB、IAB)判别图也不同于学术界早先熟知的判别图,是根据元素之间的相关关系厘定的。文中还讨论了大数据研究带来的一些可能很有意义的科学问题。如:1.在判别图研究中发现了许多效果较好的图解,主要依赖的是主元素、过渡元素和金属元素之间的关系,上述关系有什么意义,为什么会起到判别的作用?2.数据挖掘发现,全球大洋中脊中酸性岩极度匮乏,是否说明上地幔严重缺水?3.研究发现,中新世是全球岩浆活动最发育的时期,这一时期全球还出现了许多重大地质事件,二者之间是否存在关联?4.中新世全球埃达克岩最发育,按照埃达克岩的出露,发现从青藏高原到喀尔巴阡可能存在一个巨型的欧亚高原;5.根据对新生代苦橄岩全球时空分布研究,提出了一个如何认识全球热点问题等。文中还提出了下一步研究的建议并强调指出,科学已经进入大数据和人工智能时代,在大数据和人工智能时代,科学划分的标准发生了变化:凡是能够用数据化表述的学科才称之为科学,而不能用数据化表述的学科就不是科学,看来,能否被数据化是科学与非科学的分水岭。在大数据和人工智能时代,地质学和矿床学遭遇了空前的危机。按照我们的预测,在可以预见的未来,地球物理学将远超地质学,空间科学将异军突起,而在地质学领域内地球化学一花独放的局面还将维系很长一段时间。文中最后还探讨了今后找矿靠什么的问题,认为物化探和钻探测试技术的进步非常重要,同时,发展人工智能技术也已迫在眉睫。  相似文献   
7.
超过三分之二的地壳岩石是由来自深部的岩浆作用形成,岩浆岩记录的信息是深时数字地球(Deep-time Digital Earth,DDE)特别是深部过程研究的重要载体。岩浆岩分布范围广,样品众多,分析、定年相对方便和精确,易于数据累积。在过去的十多年,全球科学家建立了EarthChem、GEOROC、DataView等多个优秀的岩浆岩数据库。随着大数据时代的到来,地球科学也在经历向地球系统科学的重大转变。如何进一步整合分散在研究机构和个人手中的越来越多的数据,建立能服务大数据和人工智能方法的数据平台,推动地球科学研究由理论驱动的传统因果推理方法向数据驱动的大数据方法转变,是新的很有希望的突破点。文章系统介绍了目前国内外已有的岩浆岩相关数据库及其运行情况,为未来DDE计划整合全球海量岩浆岩数据,建设开放、共享、统一的大数据平台提供经验和基础。同时,也列举了以岩浆岩大数据驱动的科学研究的典型实例,并结合DDE相关任务,对利用岩浆岩大数据和人工智能进一步解决四维地球深部圈层物质构成、交换与动力学这一关键科学问题提出新的展望。  相似文献   
8.
白龙江流域属于青藏高原东北部新构造活动区,发生过甘肃舟曲2010年8.8泥石流灾害和甘肃岷县2013年7.22的6.6级地震,新构造常沿原大断裂带重新活动,断裂带结构复杂,宽度较大,并在岩层电阻率和地震波速度等物性上与围岩有差异,采用高密度电法和地震折射层析成像等综合方法,探测结果表现为破碎带上伏第四系厚度增大,破碎带由于裂隙发育,张性裂隙充填地下水后呈现低电阻率特征,但是岩层地震波速度与围岩变化不大.对于老断裂带在较长时间演化历史下裂隙带沉积充填胶结物,愈合断裂带电阻率和地震波速度与围岩差异不明显,采用综合物探方法是研究新构造断裂带有效手段.  相似文献   
9.
秭归褶皱带位于大巴山逆冲带与雪峰山逆冲带叠合部位,总体呈现穹窿-盆地型式,是构造复合、联合作用的结果,记录了大巴山逆冲带与雪峰山逆冲带两者相互作用的重要信息,是研究构造复合和联合过程的理想区域。本文通过对秭归褶皱带秭归向斜、巴东复向斜和香龙山背斜的野外调查,对褶皱枢纽、相关断层、节理等进行详细构造解析,理清了先后叠加关系,在此基础上进行了构造分期和配套,对变形期古构造应力场进行了恢复重建。结果表明秭归褶皱带晚侏罗世-早白垩世经历三期构造变形:D1期以近EW向的秭归向斜和香龙山背斜为代表,秭归向斜为轴面近直立的开阔圆弧状,香龙山背斜呈轴面近直立的箱状,相关逆冲断层具由北向南逆冲的特点,可能与大巴山由NE向SW逆冲作用有关。D2期秭归向斜叠加近SN向枢纽,呈锅状,香龙山背斜东段发育鼻状的五龙背斜,褶皱带呈穹窿-盆地型。与向斜相关的水田坝断裂带向SEE逆冲,主压应力场呈NWW-SEE近平行的束状。该期变形可能与雪峰山逆冲带向NW逆冲过程中受到黄陵背斜阻挡有关。D3期秭归向斜近SN向枢纽向南西弯曲,巴东复向斜呈NW凸出弧形,香龙山背斜西端叠加NE-SW向构造形迹。主压应力场总体向NW发散。该期变形可能与雪峰山逆冲带向NW逆冲推挤有关。上述构造分析表明,向SW逆冲的大巴山逆冲带先影响鄂西地区,之后向NW逆冲推挤的雪峰山逆冲带扩展至该地区,形成复合关系。区域构造与地层关系分析表明D1-D3形成于J3-K1,因此秭归褶皱带是大巴山逆冲构造带向SW叠瓦逆冲并与指向NW的雪峰山逆冲带复合叠加的结果,表明上扬子地区在J3-K1经历了分阶段复合叠加的过程,即前期受到大巴山逆冲带近SN构造作用影响,后期经历向NW逆冲推挤的雪峰山逆冲带NW-SE向构造叠加。  相似文献   
10.
岩浆热场:它的基本特征及其与地热场的区别   总被引:6,自引:6,他引:0  
"岩浆热场"指的是由岩浆引发的瞬间热场。热场的热主要来自未固结的岩浆,岩浆加热了围岩,使下地壳、中地壳和上地壳的下部在一个短暂的时间内保持一种高热状态。岩浆热场与地热场有许多不同:(1)热的来源不同。地热场的热主要来自地壳物质放射性生成的热;岩浆热场的热来自岩浆。(2)热的分布不同。地热场的等温面总体上呈水平分布,温度随深度增加而增加;岩浆热场的等温面则围绕岩体分布,靠近岩体温度高,远离岩体温度低,故岩浆热场的等温面是大体垂直于地热场等温面分布的。(3)热场的规模不同。地热场是全球性的,岩浆热场是局部性的,只在有岩浆的地方才出现。岩体小则规模小(热场宽度仅几米或几十米),岩体大则规模大(宽约几千米);如果存在大规模岩浆活动,岩浆热场的长宽均可达几百或上千千米,如在中国东部中生代大规模岩浆活动期间。(4)热持续的时间不同。地热场可以持续很长的时间(几十、几百或几千个百万年);岩浆热场是瞬间的突发性事件,持续的时间从几年到几个百万年。岩浆热场最重要的意义是,它是热液赖以上升的通道,它有利于来自下地壳底部和壳幔过渡带的流体(热液)的活动,使含矿热液得以顺利上升,并在热场范围内进行充分的活动、对流循环、萃取围岩中的成矿金属元素,并在地壳浅部岩浆热场之上合适的部位沉淀富集成矿。"岩浆热场"的概念依赖于对岩浆物理性质和过程的深入了解,由于我们这方面的知识相对贫乏,所以目前对岩浆热场的了解还是很肤浅的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号