首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   21篇
  国内免费   5篇
测绘学   9篇
大气科学   34篇
地球物理   110篇
地质学   161篇
海洋学   24篇
天文学   96篇
综合类   1篇
自然地理   14篇
  2023年   2篇
  2022年   13篇
  2021年   3篇
  2020年   20篇
  2019年   17篇
  2018年   20篇
  2017年   18篇
  2016年   25篇
  2015年   13篇
  2014年   12篇
  2013年   19篇
  2012年   23篇
  2011年   30篇
  2010年   18篇
  2009年   30篇
  2008年   28篇
  2007年   30篇
  2006年   21篇
  2005年   18篇
  2004年   16篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1963年   1篇
排序方式: 共有449条查询结果,搜索用时 31 毫秒
1.
Achieving long-term climate mitigation goals in Japan faces several challenges, starting with the uncertain nuclear power policy after the 2011 earthquake, the uncertain availability and progress of energy technologies, as well as energy security concerns in light of a high dependency on fuel imports. The combined weight of these challenges needs to be clarified in terms of the energy system and macroeconomic impacts. We applied a general equilibrium energy economic model to assess these impacts on an 80% emission reduction target by 2050 considering several alternative scenarios for nuclear power deployment, technology availability, end use energy efficiency, and the price of fossil fuels. We found that achieving the mitigation target was feasible for all scenarios, with considerable reductions in total energy consumption (39%–50%), higher shares of low-carbon sources (43%–72% compared to 15%), and larger shares of electricity in the final energy supply (51%–58% compared to 42%). The economic impacts of limiting nuclear power by 2050 (3.5% GDP loss) were small compared to the lack of carbon capture and storage (CCS) (6.4% GDP loss). Mitigation scenarios led to an improvement in energy security indicators (trade dependency and diversity of primary energy sources) even in the absence of nuclear power. Moreover, preliminary analysis indicates that expanding the range of renewable energy resources can lower the macroeconomic impacts of the long term target considerably, and thus further in depth analysis is needed on this aspect.

Key policy insights

  • For Japan, an emissions reduction target of 80% by 2050 is feasible without nuclear power or CCS.

  • The macroeconomic impact of such a 2050 target was largest without CCS, and smallest without nuclear power.

  • Energy security indicators improved in mitigation scenarios compared to the baseline.

  相似文献   
2.
Intensive irrigated agriculture substantially modifies the hydrological cycle and often has major environmental impacts. The article focuses upon a specific concern—the tendency for progressive long-term increases in the salinity of groundwater recharge derived from irrigated permeable soils and replenishment of unconfined aquifers in more arid regions. This process has received only scant attention in the water-resource literature and has not been considered by agricultural science. This work makes an original contribution by analysing, from scientific principles, how the salinisation of groundwater recharge arises and identifies the factors affecting its severity. If not proactively managed, the process eventually will impact irrigation waterwell salinity, the productivity of agriculture itself, and can even lead to land abandonment. The types of management measure required for mitigation are discussed through three detailed case histories of areas with high-value groundwater-irrigated agriculture (in Spain, Argentina and Pakistan), which provide a long-term perspective on the evolution of the problem over various decades.  相似文献   
3.
We introduce a probabilistic framework for vulnerability analysis and use it to quantify current and future vulnerability of the US water supply system. We also determine the contributions of hydro-climatic and socio-economic drivers to the changes in projected vulnerability. For all scenarios and global climate models examined, the US Southwest including California and the southern Great Plains was consistently found to be the most vulnerable. For most of the US, the largest contributions to changes in vulnerability come from changes in supply. However, for some areas of the West changes in vulnerability are caused mainly by changes in demand. These changes in supply and demand result mainly from changes in evapotranspiration rather than from changes in precipitation. Importantly, changes in vulnerability from projected changes in the standard deviations of precipitation and evapotranspiration are of about the same magnitude or larger than those from changes in the corresponding means over most of the US, except in large areas of the Great Plains, in central California and southern and central Texas.  相似文献   
4.
The paper presents a detailed reexamination of the effects of three damping models on the inelastic seismic response of structures with massless degrees of freedom. The models considered correspond to (a) Rayleigh damping based on current properties (tangent stiffness), (b) Rayleigh damping based on initial properties, and (c) modal damping. The results suggest that some nonzero damping forces/moments at massless DOFs obtained in multistory frames for the case of Rayleigh damping with tangent stiffness may be numerical artifacts rather than a deficiency of the damping model. The results also indicate that significant artificial numerical oscillations in the velocities of the secondary components of MDOF structures are introduced when modal damping or mass-proportional damping is used.  相似文献   
5.
Since Holocene time, above-mean precipitations recorded during the El Niño warm ENSO phase have been linked to the occurrence of severe debris flows in the arid Central Andes. The 2015–2016 El Niño, for its unusual strength, began driving huge and dangerous landslides in the Central Andes (32°) in the recent South Hemisphere summer. The resulting damages negatively impacted the regional economy. Despite this, causes of these dangerous events were ambiguously reported. For this reason, a multidisciplinary study was carried out in the Mendoza River valley. Firstly, a geomorphological analysis of affected basins was conducted, estimating morphometric parameters of recorded events such as velocity, stream flow, and volume. Atmospheric conditions during such events were analyzed, considering precipitations, snow cover, temperature range, and the elevation of the zero isotherm. Based on our findings, the role of El Niño on the slope instability in the Central Andes is more complex in the climate change scenario. Even though some events were effectively triggered by intense summer rainstorm following expectations, the most dangerous events were caused by the progressive uplifting of the zero isotherm in smaller basins where headwaters are occupied by debris rock glaciers. Our research findings give light to the dynamic coupled system ENSO–climate change–landslides (ECCL) at least in this particular case study of the Mendoza River valley. Landslide activity in this Andean region is driven by wetter conditions linked to the ENSO warm phase, but also to progressive warming since the twentieth century in the region. This fact emphasizes the future impact of the natural hazards on Andean mountain communities.  相似文献   
6.
Tillage, especially in semiarid Mediterranean environment, enhances the mineralization process of soil organic matter (SOM) and, in turn, decreases aggregate stability. Furthermore, continuous tillage leads to the formation of plough pan beneath the tilled layer. In the present study, we investigated the effect of an innovative self-propelled machine (spading machine, SM) for shallow tillage on SOM, water stable aggregates (WSA) and soil penetration resistance (PR). Such effects were compared to those of chisel plough (CP), rotary tiller (RT) and no tillage (NT). Each tilling method was applied up to a depth of 15 cm, whereas in NT only a brush cutter was used for weed control. Soil analyses were performed at the start of the experiment (March 2009, T0), in April 2010 (T1), May 2012 (T3), and June 2014 (T5) at both 0–15 and 15–30 cm. Compared to T0, soil PR increased with time in all the treatments and generally followed the order SM?<?RT?<?CP?<?NT. In soil tilled with the SM, soil PR never exceeded 2.5 MPa that was demonstrated to be a critical value for root elongation, and no evidence of the formation of plough pan beneath the tilled layer was observed. SOC as well as water content and WSA were higher in SM compared with CP and RT. In conclusion, the spading machine was proved to be more efficient in lowering the soil PR and in avoiding the formation of the plough pan. Furthermore, SM increased SOC and WSA.  相似文献   
7.
Isotopes of water (2H/1H and 18O/16O) are commonly used to trace hydrological processes such as moisture recycling, evaporation loss, and moisture source region and often vary temporally in a given region. This study provides a first‐ever characterization of temporally variable precipitation mechanisms of San Cristóbal Island, Galápagos. We collected fog, rain, and throughfall samples over three field seasons to understand the mechanisms driving seasonal‐ and event‐based variability in the isotopic composition of precipitation in Galápagos. We establish that fog is a common phenomenon in San Cristóbal, especially during the dry season, and we found that fog, compared with cocollected rainfall, is consistently enriched. We further suggest that the relative contribution of fog formed via different mechanisms (orographic, advective, radiation) varied seasonally. We found that the source region is the most dominant control of the isotopic composition of rainfall in the Galápagos at both the seasonal and event scales, but subcloud evaporative processes (the nontraditional manifestation of the amount effect) became a dominant control on the isotopic composition of rainfall during the dry season. Overall, our findings suggest that understanding seasonally variable water‐generating mechanisms is required for effective water resource management in San Cristóbal Island and other semiarid island ecosystems under current and future regimes of climate change.  相似文献   
8.
During emplacement, lavas modify the pre‐existing topography and release a large amount of heat. In spite of the relevance of both heat and mass release, combined morphological and thermal analyses have been seldom carried out at a flow‐field scale. Here, we consider a channelised lava flow unit formed at Mt Etna during the 2001 flank eruption, and we show that, by combining a morphological analysis of the pre‐ and post‐emplacement topography with the analysis of the syn‐eruptive thermal signature, critical insights about the processes driving mass and heat dissipation can be derived. Our results suggest that, in the considered lava flow, the pre‐emplacement slope controls heat dissipation and can influence the thickness of the final lava deposit, with possible implications for hazard assessment. The width of the lava channel, instead, appears less sensitive to the pre‐emplacement slope, and tends to regularly increase with increasing distance from the vent.  相似文献   
9.
This paper reports improvements to algorithms for the simulation of 3-D hydraulic fracturing with the Generalized Finite Element Method (GFEM). Three optimizations are presented and analyzed. First, an improved initial guess based on solving a 3-D elastic problem with the pressure from the previous step is shown to decrease the number of Newton iterations and increase robustness. Second, an improved methodology to find the time step that leads to fracture propagation is proposed and shown to decrease significantly the number of iterations. Third, reduced computational cost is observed by properly recycling the linear part of the coupled stiffness matrix. Two representative examples are used to analyze these improvements. Additionally, a methodology to include the leak-off term is presented and verified against asymptotic analytical solutions. Conservation of mass is shown to be well satisfied in all examples.  相似文献   
10.
Three-dimensional urban cartography is needed for city changes’ assessment. The variety of studies using 3D calculations of urban elements grows each year. Building and vegetation volumes are necessary to assess and understand spatio-temporal urban changeable environments. However, there are technical questions as to which method can improve 3D urban cartographic accuracy. The innovative part of this current study is the creation of a six-band hybrid obtained from LIDAR and WorldView2 synergy. Two different enhancement algorithms demonstrated the most important spectral features for the urban development and vegetation classes. Results indicated an improvement in accuracy by up to 21.3%, according to the Kappa coefficient. Both infra-red band and intensity band were the most significant, according to the principal components analysis. The synergy delimited classes and polygons, as well as the direct display of information regarding heights of elements and improving the extraction of roads, buildings and vegetation classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号