首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   2篇
地质学   2篇
综合类   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery (Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.  相似文献   
2.
Climate change has led to increased temperatures, and simulation models suggest that this should affect crop production in important agricultural regions of the world. Nations at higher latitudes, such as Canada, will be most affected. We studied the relationship between climate variability (temperature and precipitation) and corn yield trends over a period of 33 years for the Monteregie region of south-western Quebec using historical yield and climate records and statistical models. Growing season mean temperature has increased in Monterregie, mainly due to increased September temperature. Precipitation did not show any clear trend over the 33 year period. Yield increased about 118 kg ha−1 year−1 from 1973 to 2005 (under normal weather conditions) due mainly to changes in technology (genetics and management). Two climate variables were strongly associated with corn yield variability: July temperature and May precipitation. These two variables explain more than a half of yield variability associated with climate. In conclusion, July temperatures below normal and May precipitation above normal have negative effects on corn yield, and the growing seasons have warmed, largely due to increases in the September temperature.  相似文献   
3.
Rainfall distributions in Iran are spatially and temporally heterogeneous, a fact probably linked to the mostly arid and semi-arid climate of the country. On the other hand, water demand is increasing with increasing population and improving life style. At present, the optimal utilization of water resources and irrigation dams is the primary concern of water resource managers. The Eleviyan dam (with a capacity of 60 hm3) was constructed to meet the irrigation and municipal water needs of the Maraghan region (Northwestern Iran). In this study, the efficiency of the Eleviyan irrigation dam system was investigated in three phases by setting up the optimization model that maximized the water release for irrigation purposes after municipal water need were met. In the first phase, the inflows measured in the 21 years prior to the construction of the reservoir, and in the second, the inflows generated by the Monte Carlo simulation method, and in the third phase, the inflows after the construction of the reservoir were used. The results demonstrate that the capacity determined during the preliminary studies was accurate and the operation carried out in the recent periods of operation life was up to a satisfactory standard.  相似文献   
4.
Flow estimations for the Sohu Stream using artificial neural networks   总被引:3,自引:2,他引:1  
In this study, daily rainfall–runoff relationships for Sohu Stream were modelled using an artificial neural network (ANN) method by including the feed-forward back-propagation method. The ANN part was divided into two stages. During the first stage, current flows were estimated by using previously measured flow data. The best network architecture was found to utilise two neurons in the input layer (the delayed flows from the first and second days), two hidden layers, and one output layer (the current flow). The coefficient of determination (R 2) in this architecture was 81.4%. During the second stage, the current flows were estimated by using a combination of previously measured values for precipitation, temperature, and flows. The best architecture consisted of an input layer of 2 days of delayed precipitation, 3 days of delayed flows, and temperature of the current. The R 2 in this architecture was calculated to be 85.5%. The results of the second stage best reflected the real-world situation because they accounted for more input variables. In all models, the variables with the highest R 2 ranked as the previous flow (81.4%), previous precipitation (21.7%), and temperature.  相似文献   
5.
This study investigate the potential of M5 model tree in predicting daily stream flows in Sohu river located within the municipal borders of Ankara, Turkey. The results of the M5 model tree was compared with support vector machines. Both modelling approaches were used to forecast up to 7-day ahead stream flow. A comparison of correlation coefficient and root mean square value indicates that M5 model tree approach works equally well to the SVM for same day discharge prediction. The M5 model tree also works well up to 7-day ahead discharge forecasting in comparison of SVM with this data set. An advantage of using M5 model tree approach is the availability of simple linear models to predict the discharge as well use of less computational time.  相似文献   
6.
The Raskoh arc, which occurs in the western part of Pakistan, is about 250 km long, 40 km wide and trends in ENE direction. This arc is designated as frontal arc of Chagai-Raskoh arc system. Arc is convex towards southeast and is terminated by the Chaman transform fault zone towards east. The Raskoh arc is a fossil oceanic island arc which was formed due to the intra-oceanic convergence in the Ceno-Tethys. The Late Cretaceous Kuchakki Volcanic Group is the most widespread and previously considered the oldest unit of the Raskoh arc followed by sedimentary rock formations including Rakhshani Formation (Paleocene), Kharan Limestone (Early Eocene), Nauroze Formation (Middle Eocene to Oligocene), Dalbandin Formation (Miocene to Pleistocene), and semi-unconsolidated Subrecent and Recent deposits. The Rakhshani Formation is the most widespread and well-exposed unit of the Raskoh arc. During the present field investigation the Rakhshani Forma-tion in the southeastern part of the Raskoh arc is dentified as an accretionary complex, which is designated as Raskoh accretionary complex. The Raskoh accretionary complex is subdivided into three units: (a) Bunap sedi-mentary complex, (b) Charkohan radiolarian chert, and (c) Raskoh ophiolite mélange. The Bunap sedimentary complex is farther divided into three tectonostratigraphic units viz., northern, middle and southern. Each unit is bounded by thrust fault, which is usually marked by sheared serpentinites, except northern unit, which has grada-tional and at places faulted contact with the Kuchakki Volcanic Group. The northern unit mainly comprises al-lochthonous fragments and blocks of limestone, sandstone, mudstone and the volcanics in dark gray, greenish gray and bluish gray siliceous flaky shale. At places the shale is metamorphosed into phyllite. This unit is thrust over the middle unit, which exhibits relatively a coherent stratigraphy represented by greenish gray calcareous flaky shale with intercalation of thin beds and lenticular bodies of mudstone, sandstone and limestone. The middle unit is again thrust over the southern unit, which is mainly composed of large exotic blocks of volcanic rocks, lime-stone, sandstone, mudstone and conglomerate embedded in a dark gray, greenish gray and bluish gray siliceous flaky shale which is generally moderately argillized. The unit is thrust over the Kharan Limestone. During the present field investigation several poorly preserved ammonite fossils were collected from the dark green to black mudstones of the middle unit of the Bunap sedimentary complex. These fossils are identified as Pachysphinctes cf. P. africanus a Lower Kimmeridgian, Torquatisphinctes cf. P alterniplicatus, an Upper Kim-meridgian and Parodontoceras cf. Blandfordiceras wallichi: a Lower Tithonian ammonite. The Bunap sedimentary complex was probably deposited on the ocean floor of the Ceno-Tethys that once occurred between the newly dis-lodged collage of Cimmerian continent (Central Iran, Afghan blocks, Lhasa and West Burma) and the northern passive margin of Gondwana.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号