首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   18篇
  国内免费   9篇
测绘学   15篇
大气科学   36篇
地球物理   94篇
地质学   153篇
海洋学   39篇
天文学   113篇
综合类   1篇
自然地理   26篇
  2022年   4篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   25篇
  2012年   20篇
  2011年   21篇
  2010年   22篇
  2009年   27篇
  2008年   10篇
  2007年   14篇
  2006年   12篇
  2005年   11篇
  2004年   11篇
  2003年   13篇
  2002年   16篇
  2001年   10篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   9篇
  1987年   11篇
  1986年   3篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   9篇
  1976年   5篇
  1975年   5篇
  1973年   4篇
  1972年   3篇
  1971年   6篇
  1967年   2篇
排序方式: 共有477条查询结果,搜索用时 31 毫秒
1.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
2.
Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W and Tl were determined by isotope dilution sector field ICP‐MS in the same sample aliquot of reference materials using HF‐HNO3 digestion in PFA beakers in pressure bombs and glassy carbon vessels in a high‐pressure asher (HPA‐S) for comparison. Additionally, Bi was determined by internal standardisation relative to Tl. Because isobaric and oxide interferences pose problems for many of these elements, efficient chromatographic separation methods in combination with an Aridus desolvator were employed to minimise interference effects. Repeated digestion and measurement of geological reference materials (BHVO‐1, BHVO‐2, SCo‐1, MAG‐1, MRG‐1 and UB‐N) gave results with < 5% relative intermediate precision (1s) for most elements, except Bi. Replicates of NIST SRM 612 glass digested on a hot plate were analysed by the same methods, and the results agree with reference values mostly within 2% relative deviation. Data for the carbonaceous chondrites Allende, Murchison, Orgueil and Ivuna are also reported. Digestion in a HPA‐S was as efficient as in pressure bombs, but some elements displayed higher blank levels following HPA‐S treatment. Pressure bomb digestion yielded precise data for volatile S, Se and Te, but may result in high blanks for W.  相似文献   
3.
Mineralogical and geochemical diversity in cryoconite granules from Aldegondabreen glacier was investigated using FTIR spectroscopy. Results suggest that the technique is an effective tool for investigating mineralogy and identifying spatial differences in geochemistry, based upon characteristic spectral signatures.  相似文献   
4.
We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December?CFebruary (austral summer) and least realistic in March?CMay (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3?weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October?CMarch. We also demonstrate enhanced prediction skill of rainfall at up to 3?weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections.  相似文献   
5.
The importance of initializing atmospheric intra-seasonal (stochastic) variations for prediction of the onset of the 1997/1998 El Ni?o is examined using the Australian Bureau of Meteorology coupled seasonal forecast model. A suite of 9-month forecasts was initialized on the 1st December 1996. Observed ocean initial conditions were used together with five different atmospheric initial conditions that sample a range of possible initial states of intra-seasonal (stochastic) variability, especially the Madden-Julian Oscillation (MJO), which is considered the primary stochastic variability of relevance to El Ni?o evolution. The atmospheric initial states were generated from a suite of atmosphere-only integrations forced by observed sea surface temperatures (SST). To the extent that low frequency variability of the tropical atmosphere is forced by slow variations in SST, these atmospheric states should all represent realistic low frequency atmospheric variability that was present in December 1996. However, to the extent that intra-seasonal variability is not constrained by SST, they should capture a range of intra-seasonal states, especially variations in the activity, phase and amplitude of the MJO. For each of these five states, a 20-member ensemble of coupled model forecasts was generated by the addition of small random perturbations to the SST field at the initial time. The ensemble mean from all five sets of forecasts resulted in El Ni?o but three of the sets produced substantially greater warming by months 4?C5 in the NINO3.4 region compared to the other two. The warmer group stemmed from stronger intra-seasonal westerly wind anomalies associated with the MJO that propagated eastward into the central Pacific during the first 1?C2?months of the forecast. These were largely absent in the colder group; the weakest of the colder group developed strong easterly wind anomalies, relative to the grand ensemble mean, that propagated into the central Pacific early in the forecast, thereby generating significantly weaker downwelling Kelvin waves in comparison to the warmer group. The strong reduction in downwelling Kelvin waves in the weakest case acted to limit the warming in the eastern Pacific, resulting in a ??Modoki?? type El Ni?o that is more focused in the central Pacific. Our results suggest that the intra-seasonal stochastic component of the atmospheric initial condition has an important and potentially predictable impact on the forecasts of the initial warming and flavour of the 1997/1998 El Ni?o. However, to the extent that atmospheric intra-seasonal variability is not predictable beyond a month or two, these results imply a limit to the accuracy with which the strength and perhaps the spatial distribution of an El Ni?o can ultimately be predicted. These results do not preclude a predictable role of the MJO and other intra-seasonal stochastic variability at longer lead times if some aspects of the stochastic variability are preconditioned by the evolving state of El Ni?o or other low frequency boundary forcing.  相似文献   
6.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   
7.
The Zagros fold‐and‐thrust belt of SW Iran represents deformation of the former Arabian passive margin since Permian–Triassic opening of the Neo‐Tethys ocean. The Zagros belt is characterized by a present‐day structural salient‐recess setting inherited from past marginal embayment‐promontory geometry, which was involved in discontinuous ophiolite obduction and diachronous continental collision. We examine outcrop‐scale Mesozoic extensional brittle tectonics, preserved as syn‐depositional normal faults within the folded strata, in terms of stress tensor inversion. The result is then integrated with belt‐scale isopach, seismic and topographical data to delineate the geometry of a major irregularity along the passive margin originating from oblique oceanic opening. The implication of this configuration within the tectonic framework of oceanic closure is discussed.  相似文献   
8.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
The fall and recovery of the Tissint meteorite in 2011 created a rare opportunity to examine a Martian sample with a known, short residence time on Earth. Tissint is an olivine‐phyric shergottite that accumulated olivine antecrysts within a single magmatic system. Coarse olivine grains with nearly homogeneous cores of Mg# >80 suggest slow re‐equilibration. Many macroscopic features of this sample resemble those of LAR 06319, including the olivine crystal size distribution and the presence of evolved oxide and olivine compositions. Unlike LAR 06319, however, no magmatic hydrous phases were found in the analyzed samples of Tissint. Minor and trace element compositions indicate that the meteorite is the product of closed‐system crystallization from a parent melt derived from a depleted source, with no obvious addition of a LREE‐rich (crustal?) component prior to or during crystallization. The whole‐rock REE pattern is similar to that of intermediate olivine‐phyric shergottite EETA 79001 lithology A, and could also be approximated by a more olivine‐rich version of depleted basaltic shergottite QUE 94201. Magmatic oxygen fugacities are at the low end of the shergottite range, with log fO2 of QFM‐3.5 to ‐4.0 estimated based on early‐crystallized minerals and QFM‐2.4 estimated based on the Eu in pyroxene oxybarometer. These values are similarly comparable to other depleted shergottites, including SaU 005 and QUE 94201. Tissint occupies a previously unsampled niche in shergottite chemistry: containing olivines with Mg# >80, resembling the enriched olivine‐phyric shergottite LAR 06319 in its crystallization path, and comparable to intermediate olivine‐phyric shergottite EETA 79001A, depleted olivine‐phyric shergottite DaG 476, and depleted basaltic shergottite QUE 94201 in its trace element abundances and oxygen fugacity. The apparent absence of evidence for terrestrial alteration in Tissint (particularly in trace element abundances in the whole‐rock and individual minerals) confirms that exposure to the arid desert environment results in only minimal weathering of samples, provided the exposure times are brief.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号