首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  国内免费   2篇
测绘学   3篇
大气科学   34篇
地球物理   10篇
地质学   14篇
海洋学   2篇
天文学   2篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有67条查询结果,搜索用时 23 毫秒
1.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations.  相似文献   
3.
As a result of climate change and unsustainable land use management in the recent past, droughts have become one of the most devastating climatic hazards whose impacts may prolong from months to years. This study presents analysis of droughts for two major cropping seasons, i.e., Kharif (May–September) and Rabi (October–April), over the Potwar Plateau of Pakistan. The analysis is performed using various datasets viz. observational, reanalysis, and Regional Climate Models (RCMs), for the past (1981–2010) and future (2011–2100) time periods. The following two methods for the identification of dry and wet years, also referred to as drought and wetness, are applied: (1) the percentile rank approach and (2) the drought indices, Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). Future projections of droughts are investigated using RCM (RegCM4.4 and RCA4) outputs from CORDEX South Asia domain under two Representative Concentration Pathway (RCP) scenarios, RCP4.5 and RCP8.5. Generally, the indices show non-significant decreasing trends of drought severity in the recent past for all cases; however, significant increasing trends are observed for annual (0.006) and Kharif (0.007) cases under RCP4.5 scenario. The analysis of large-scale atmospheric dynamics suggests the significant role of low-level geopotential height anomalies over Tibetan Plateau (northwest of Pakistan) during Kharif (Rabi) season in controlling drought occurrence by transporting moisture from the Bay of Bengal (Arabian Sea). Moreover, composites of vertically integrated moisture transport, moisture flux convergence/divergence, and precipitable water anomalies show their marked contribution in maintaining the drought/wetness conditions over the Potwar region.  相似文献   
4.
Simulated response to inter-annual SST variations in the Gulf Stream region   总被引:1,自引:1,他引:0  
Recent studies show that mid-latitude SST variations over the Kuroshio-Oyashio Extension influence the atmospheric circulation. However, the impact of variations in SST in the Gulf Stream region on the atmosphere has been less studied. Understanding the atmospheric response to such variability can improve the climate predictability in the North Atlantic Sector. Here we use a relatively high resolution (~1°) Atmospheric General Circulation Model to investigate the mechanisms linking observed 5-year low-pass filtered SST variability in the Gulf Stream region and atmospheric variability, with focus on precipitation. Our results indicate that up to 70 % of local convective precipitation variability on these timescales can be explained by Gulf Stream SST variations. In this region, SST and convective precipitation are strongly correlated in both summer (r = 0.73) and winter (r = 0.55). A sensitivity experiment with a prescribed local warm SST anomaly in the Gulf Stream region confirms that local SST drives most of the precipitation variability over the Gulf Stream. Increased evaporation connected to the anomalous warm SST plays a crucial role in both seasons. In summer there is an enhanced local SLP minimum, a concentrated band of low level convergence, deep upward motion and enhanced precipitation. In winter we also get enhanced precipitation, but a direct connection to deep vertical upward motion is not found. Nearly all of the anomalous precipitation in winter is connected to passing atmospheric fronts. In summer the connection between precipitation and atmospheric fronts is weaker, but still important.  相似文献   
5.
Beobide-Arsuaga  Goratz  Bayr  Tobias  Reintges  Annika  Latif  Mojib 《Climate Dynamics》2021,56(11):3875-3888

There is a long-standing debate on how the El Niño/Southern Oscillation (ENSO) amplitude may change during the twenty-first century in response to global warming. Here we identify the sources of uncertainty in the ENSO amplitude projections in models participating in the Coupled Model Intercomparison Phase 5 (CMIP5) and Phase 6 (CMIP6), and quantify scenario uncertainty, model uncertainty and uncertainty due to internal variability. The model projections exhibit a large spread, ranging from increasing standard deviation of up to 0.6 °C to diminishing standard deviation of up to − 0.4 °C by the end of the twenty-first century. The ensemble-mean ENSO amplitude change is close to zero. Internal variability is the main contributor to the uncertainty during the first three decades; model uncertainty dominates thereafter, while scenario uncertainty is relatively small throughout the twenty-first century. The total uncertainty increases from CMIP5 to CMIP6: while model uncertainty is reduced, scenario uncertainty is considerably increased. The models with “realistic” ENSO dynamics have been analyzed separately and categorized into models with too small, moderate and too large ENSO amplitude in comparison to instrumental observations. The smallest uncertainties are observed in the sub-ensemble exhibiting realistic ENSO dynamics and moderate ENSO amplitude. However, the global warming signal in ENSO-amplitude change is undetectable in all sub-ensembles. The zonal wind-SST feedback is identified as an important factor determining ENSO amplitude change: global warming signal in ENSO amplitude and zonal wind-SST feedback strength are highly correlated across the CMIP5 and CMIP6 models.

  相似文献   
6.
A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100?years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000?years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world.  相似文献   
7.
8.
Combined geophysical techniques such as multi-electrode resistivity, induced polarization, and borehole geophysical techniques were carried out on volcano-sedimentary rocks in the north of Gemas as part of the groundwater resource’s investigations. The result identifies four resistivity units: the tuffaceous mudstone, tuffaceous sandstone, the tuff bed, and the shale layer. Two types of aquifer systems in terms of storage were identified within the area: one within a fracture system (tuff), which is the leaky area through which vertical flow of groundwater occurs, and an intergranular property of the sandy material of the aquifer which includes sandstone and tuffaceous sandstone. The result also reveals that the aquifer occupies a surface area of about 3,250,555 m2 with a mean depth of 43.71 m and a net volume of 9.798?×?107?m3. From the approximate volume of the porous zone (28 %) and the total aquifer volume, a usable capacity of (274.339?±?30.177)?×?107?m3 of water in the study area can be deduced. This study provides useful information that can be used to develop a much broader understanding of the nature of groundwater potential in the area and their relationship with the local geology.  相似文献   
9.
The equatorial Atlantic oscillation and its response to ENSO   总被引:6,自引:3,他引:3  
An internal equatorial Atlantic oscillation has been identified by analyzing sea surface temperature (SST) observations. The equatorial Atlantic oscillation can be viewed as the Atlantic analogue of the El Niño/Southern Oscillation (ENSO) phenomenon in the equatorial Pacific, but it is much less vigorous. The equatorial Atlantic oscillation is strongly influenced by the Pacific ENSO with the equatorial Atlantic sea surface temperature lagging by about six months. This lag can be explained by the dynamical adjustment time of the equatorial Atlantic to low-frequency wind stress variations and the seasonally varying background state, which favours strongest growth of perturbations in summer. Results of an extended-range simulation with a coupled ocean-atmosphere GCM support this picture.  相似文献   
10.
On the predictability of decadal changes in the North Pacific   总被引:2,自引:0,他引:2  
 The predictability of decadal changes in the North Pacific is investigated with an ocean general circulation model forced by simplified and realistic atmospheric conditions. First, the model is forced by a spatially fixed wind stress anomaly pattern characteristic for decadal North Pacific climate variations. The time evolution of the wind stress anomaly is chosen to be sinusoidal, with a period of 20 years. In this experiment different physical processes are found to be important for the decadal variations: baroclinic Rossby waves dominate the response. They move westward and lead to an adjustment of the subtropical and subpolar gyre circulations in such a way that anomalous temperatures in the central North Pacific develop as a delayed response to the preceding wind stress anomalies. This delayed response provides not only a negative feedback but also bears the potential for long-term predictions of upper ocean temperature changes in the central North Pacific. It is shown by additional experiments that once these Rossby waves have been excited, decadal changes of the upper ocean temperatures in the central North Pacific evolve without any further anomalous atmospheric forcing. In the second part, the model is forced by surface heat flux and wind stress observations for the period 1949–1993. It is shown that the same physical processes which were found to be important in the simplified experiments also govern the evolution of the upper ocean in this more realistic simulation. The 1976/77 cooling can be mainly attributed to anomalously strong horizontal advection due to the delayed response to persistent wind stress curl anomalies in the early 1970s rather than local anomalous atmospheric forcing. This decadal change could have been predicted some years in advance. The subsequent warming in the late 1980s, however, cannot be mainly explained by advection. In this case, local anomalous atmospheric forcing needs to be considered. Received: 6 July 1998 / Accepted: 16 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号