首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   11篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The Neo-Tethyan subduction in Iran is characterized by the Urumieh–Dokhtar magmatic arc (UDMA), formed by northeast-ward subduction of the oceanic crust beneath the central Iran. This belt coincides with the porphyry copper metallogenic belt that comprises several metallogenic zones, including Ahar–Jolfa in northwest Iran. The Ahar–Jolfa metallogenic zone encompasses two main batholiths of Qaradagh and Sheyvardagh and numerous intrusive bodies of Cenozoic, which have produced many base and precious metal deposits and prospects. The former is considered as continuation of the Meghri–Ordubad pluton in South Armenian Block (SAB), which also hosts porphyry copper deposits (PCDs). The Sungun PCD is the largest occurrence in northwest Iran. Rhenium-Osmium ages of Sungun molybdenites are early Miocene and range between 22.9 ± 0.2 and 21.7 ± 0.2 Ma. Comparison of the ages obtained here with published ages for mineralization across the region suggests the following sequence. The earliest porphyry Cu–Mo mineralization event in northwest Iran is represented by Saheb Divan PCD of late Eocene age, which is followed by the second epoch of middle Oligocene, including the Cu–Mo–Au mineralization at Qarachilar and the Haftcheshmeh PCD. Mineralization in Sungun, Masjed Daghi, Kighal and Niaz deposits corresponds to the third mineralization event in northwest Iran. The first epoch in northwest Iran postdates all Eocene mineralizations in SAB, while the second epoch is coeval with Paragachay and the first-stage of Kadjaran PCDs. Its third epoch is younger than all mineralizations in SAB, except the second stage in Kadjaran PCD. Finally, the Cu mineralization epochs in northwest Iran are older than nearly all PCDs and prospects in Central Iran (except the Bondar Hanza PCD), altogether revealing an old to young trend along the UDMA and the porphyry Cu belt towards southeast, resulted from diachronous, later closure of the Neo-Tethyan oceanic basin in central and SE Iran.  相似文献   
2.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   
3.
ABSTRACT

We present zircon U-Pb crystallization ages combined with bulk rock major and trace element geochemistry and Sr-Nd-Pb and zircon in-situ Hf isotopic compositions of the Amand and Moro granitoid intrusions in northwest Iran. The Amand and Moro plutons include granite and syeno-diorite with LA-ICP-MS U-Pb zircon ages of 367 ± 6.8 Ma and 351 ± 1.3 Ma, respectively, representative of Late Devonian-Early Carboniferous magmatic activity in NW Iran. Geochemical characteristics such as typical enrichments in alkalis, Nb, Zr, Ga and Y, depletion in P and Sr and fractionated REE patterns with high Ga/Al ratios and Eu negative anomalies are consistent with A-type magmatic signatures. The granitoids are classified as A2-type and within-plate granitoids. The bulk rock geochemistry (enrichments in Th, Nb and, high Th/Yb, Zr/Y ratios) along with low variation of 143Nd/144Nd(i) and 87Sr/86Sr(i) ratios and positive zircon εHf(t) support the role of a mantle plume component for the evolution of the Amand and Moro A-type granitoids in an extensional tectonic environment. In fitting with wider regional knowledge, this magmatism occurred during Paleo-Tethys opening in northern Gondwana.  相似文献   
4.
The Ahar area is located in NW Iran. The main part of the area is covered by Eocene andesitic and andesi‐basaltic rocks within which several granitoid intrusives of Oligocene age are emplaced. This caused vast hydrothermal alterations and Cu and Au mineralization. In this regard, this contribution aims to explore the distribution of gold across the region based on systematic sampling of stream sediments and using the secondary geochemical halos, as well as the bulk leach extractable gold (BLEG) method. Meanwhile, the results obtained from these two methods will be compared in order to find out if the anomalous zones match with each other. For this, 620 stream sediment samples of ?80 mesh grain size and 422 BLEG samples were collected and analyzed by Fire Assay and atomic absorption spectroscopy (AAS) methods, respectively. For BLEG samples, gold was first dissolved using KCN before being analyzed by the AAS method. Furthermore, 84 rock samples were also collected during the field control surveys and were analyzed by Fire Assay and ICP‐OES methods for gold and other elements, respectively. After determining the distribution characteristics and statistical parameters of gold in each group of samples, anomaly maps of gold for each method were prepared, revealing almost similar anomalous zones across the region. Based on these maps, most of the discovered anomalies correlate well with granitoid intrusives of Oligocene age and the related hydrothermal alterations, which have occurred within the intrusives and the host andesitic‐basaltic rocks of Eocene age, especially at the NE and central parts of the area and east of Ahar. Some silicic veins and veinlets have been observed during field surveys in these parts, within which high concentrations of Au and sometimes Cu are determined. Another anomalous zone is located over the hydrothermal alterations within trachy‐andesitic and andesitic volcanics of Pliocene age at the SE part of the quadrangle, where vast alterations caused by volcanic fumaroles and epithermal mineralization of gold and Pb–Zn is discovered. In this regard, the SE and NE parts of the area and the east Ahar area are proposed, in order of importance, for further detailed investigations.  相似文献   
5.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   
6.
The corundum‐rich metabauxites, found at the northwest limb of an NE–SW‐trending isoclinal recumbent fold at Mt. Ismail, are enclosed in thick‐bedded platform‐type marbles of Late Cretaceous age, surrounding the polymetamorphic core series in the southern part of the Menderes Massif (SW Turkey). The metabauxite horizons observed as typically boudine‐like structure, extend laterally over c. 3 km and are 1 to 5 m thick. These rocks have dominant mineral assemblages of corundum (~50 modal %), chloritoid (~30 modal %), white mica (margarite, muscovite), diaspore, Fe–Ti‐Oxides (ilmenite, ilmenohematite, rutile), and goethite, limonite, pyrite, tourmaline (uvite, schorl) as minor phases. Chemical analyses of whole rock samples and the mineral assemblage indicate that coexisting minerals of metabauxites are highly aluminous. A number of minerals (e.g. chloritoid and margarite) display a large compositional variation reflecting the initial chemical inhomogenetiy of the karstbauxites. The field observations, trace‐element accumulation coefficients, concentration of elements such as Cr, Zr, Ga and Ni and low amounts of immobile elements all suggest that the studied corundum‐rich metabauxites can be classified as karstbauxites, and are more likely to be a product of weathering of intermediate igneous or argillaceous parental rocks, similar to the karstic Tauric bauxites in the Central Taurides (Seydi ?ehir region) and probably are similar in age (Cenomanian–Turonian). In respect of tectono‐metamorphic evolution, the studied corundum‐rich metabauxites were regionally metamorphosed at ~5–6 kbar pressure and 500–600°C as a consequence of the Barrovian metamorphism referred to as the ‘Main Menderes Metamorphism’ related to the ophiolitic obduction onto the Menderes platform from the Izmir–Ankara Suture during the Middle Eocene.  相似文献   
7.
Summary The Etive complex, one of the Caledonian Newer Granites of Scotland, is a ring complex of Devonian age, ranging in composition from pyroxene-diorite to leucogranite. Six samples, representing the major rock units in the southern parts of the Etive complex were chosen for mineral chemical studies and for estimation of the pressure and temperature conditions of magmatic crystallisation. Application of Al- in-hornblende barometry and crossite contents of amphiboles indicates a pressure <3kbar for the intrusion, in good agreement with published independent pressure estimates of 2kbar from mineral equilibria in metasedimentary hornfelses in the Etive thermal aureole. Thermometry, using ternary and binary feldspar systems, yields low temperatures, which probably reflect late-stage, post-magmatic re-equilibration of these minerals. Several geothermometers have been applied to the Quarry Diorite, the outermost intrusion of the complex. The highest temperature for the rocks comes from orthopyroxene–clinopyroxene solvus thermometry, and is 1000°C; this is interpreted to reflect the initial crystallisation of the diorite magma immediately after its emplacement. The maximum temperature from hornblende-plagioclase thermometer is 816°C, which probably reflects late-stage crystallisation of the magma.  相似文献   
8.
<正>The Makran accretionary prism is one of the most extensive subduction accretions on Earth.It is characterized by intense folding,thrust faulting and dislocation of the Cenozoic units consisted of sedimentary,igneous and metamorphic rocks.It is located in the southeast of Iran and southwest of Pakistan.Rock  相似文献   
9.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   
10.
Eslamy peninsula in NW of Iran is formed by a strato-volcano with collapsed calderon, which is intruded by lamprophyric dykes with minette composition. Also trachytic and microsyenitic dykes have intruded the volcanic rocks. The oldest volcanic activity includes eruption of leucite basanite, leucite tephrite, basanite and tephrite, which are associated with pyroclastic rocks. Lamprophyric dykes are distinguishable with large mica phenocrysts. Mica-clinopyroxenite xenoliths can be found in the rocks. The source magma of the rocks had a ultrapotassic to shoshonitic nature, rich in LREE and LILE. Eslamy peninsula lamprophyres are between alkaline and calc-alkaline lamprophyres in terms of REE patterns and spider diagrams for trace elements, but are closer to clac-alkaline lamprophyres. The behaviour of trace elements studied by the means of spider diagrams show that the magma, producing the lamprophyres, is generated from deep-mantle probably from a garnet-bearing source (garnet lherzolite) with high CO2/H2O content. The resulted magma had interacted with crustal materials and had formed Eslamy peninsula lamprophyres in a post-collisional tectonic setting. Geochemistry of rare elements indicate an extensive rutile-rich metasomatism in the source magma of the lamprophyres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号